Плавный пуск электродвигателя своими руками. Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя Плавный пуск двигателя постоянного тока

20.Способы пуска двигателя постоянного тока.

Возможны три способа пуска двигателя в ход:

1) прямой пуск, когда цепь якоря приключается непосредственно к сети на ее полное напряжение;

2) пуск с помощью пускового реостата или пусковых сопротивлений, включаемых последовательно в цепь якоря;

3) пуск при пониженном напряжении цепи якоря.

прямой пуск применяется только для двигателей мощностью до нескольких сотен ватт, у которых Ra относительно велико и поэтому при пуске процесс пуска длится не более 1-2 сек.

Самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений

Способы пуска двигателя постоянного тока

1. Прямой пуск - обмотка якоря подключается непосредственно к сети.

Ток якоря двигателя определяется формулой . (4.1) Если считать, что при прямом пуске значения напряженияпитания U и сопротивления якорной обмотки R я остаются неизменными, то ток якоря зависит от противо - ЭДС Е . В начальный момент пуска якоря двигатель неподвижен (=0) и в его обмотке Е=0 .Поэтому при подключении к сети в обмотке возникает пусковой ток
. (4.2) Обычно сопротивлениеR я невелико, особенно у двигателей большой мощности, поэтому значение пускового тока достигает 20 раз превышающих номинальный ток двигателя.недопустимо больших значений, в 10 При этом создается опасность поломки вала машины и появляется сильное искрение под щетками коллектора. По этой причине такой пуск применяется только для двигателей малой мощности, у которых R я относительно велико.

2)Реостатный пуск - в цепь якоря включается пусковой реостат для ограничения тока. В начальный момент пуска при =0 и R п =мах ток якоря будет равен


. (4.3) Максимальное значение R п подбирают так, чтобы для машин большой и средней мощности ток якоря при пуске
, а для машин малой мощности
. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением рис 4.1. В начальный момент пуск осуществляется по реостатной характеристике 4, соответствующей максимальному значению сопротивленияR п , при этом двигатель развивает максимальный пусковой момент М пmax .Регулировочный реостат R р выводится так, чтобы I в и Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением скорости вращения ротора растет и ЭДС Е , а как следствие, уменьшается ток якоря, определяющий его величину. При достижении некоторого значения М пmin часть сопротивления R п выводится, вследствие чего момент снова возрастает до М пmax , двигатель переходит на работу по реостатной характеристике 3 и разгоняется до значения М пmin . Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатной характеристики до выхода на естественную характеристику 1.Средний вращающий момент при пуске определяется из выражения
. (4.4) двигатель при этом разгоняется с некоторым постоянным ускорением.

Аналогичный пуск возможен и для двигателей последовательного возбуждения. Количество ступеней пуска зависит от жесткости естественной характеристики и требований предъявляемых к плавности пуска. Пусковые реостаты рассчитываются на кратковременную работу под током.

В реальных устройствах пуск осуществляется автоматически. Микроконтроллер, по заданному алгоритму, управляет коммутирующими элементами (релейное управление), отключая секции пускового реостата и практически реализуя описанный выше процесс.

Алгоритм управления может быть построен с использованием трех основных принципов:

1) Принцип ЭДС

2) Принцип тока

3) Принцип времени.

Идею реализации данных принципов можно пояснить с помощью пусковой схемы на электромагнитных реле (что практически применялось до широкого внедрения микропроцессорных систем управления) рисунок 4.3. К якорю машины подключается параллельно ряд реле, которые с ростом скорости вращения, а значит, ЭДС, последовательно срабатывают и своими контактами выводят из работы секции пускового реостата, постепенно уменьшая сопротивление якорной цепи.

При использования принципа тока применяются последовательно включенные реле тока, которые дают команду через свои нормально замкнутые контакты на последовательное включение соответствующих контакторов К i при снижении тока до заданного уровня.

Принцип времени предполагает применение реле времени, которые через расчетные уставки времени дают команду на шунтирование секций реостата.

4)Пуск путем плавного повышения питающего напряжения - пуск осуществляется от отдельного регулируемого источника питания. Применяется для двигателей большой мощности, где нецелесообразно применять громоздкие реостаты из-за значительных потерь электроэнергии.

Полупроводниковые низковольтные устройства (SSRV) электродвигателя служат для снижения разрушающего воздействия резких бросков тока, вызывающих механические напряжения в оборудовании и компонентах системы. В фирмы ABB Inc. основной упор делают на расширение функций "мягких" пускателей, которые могут использоваться и в качестве устройств защитного отключения двигателя. Работа таких пускателей основана на контроле электродвигателя, напряжения и температуры. Новый подход к решению проблемы состоит в плавном увеличении вращающего момента, а не напряжения на двигателе.Устройство плавного пуска рассчитывает реальную мощность статора, его убытки и. как результат, реальную мощность, переданную на ротор. Схемы таймер для периодического включения нагрузки Важно, что вращающий момент двигателя больше не зависит напрямую от подаваемого на мотор напряжения или от его механических характеристик. Увеличение вращающего момента происходит в соответствии с рассчитанным по времени графиком разгона.Низковольтные "мягкие" пускатели фирмы Eaton (S752. SB01 и S811) используют для менеджмента обмоткой контактора напряжение с широтно-импульсной модуляцией (ШИМ) амплитудой 24 В. При этом в установившемся режиме устройство потребляет всего 5 Вт. Устройства менеджмента двигателем Ci-tronic фирмы Danfoss охватывают диапазон до 20 кВт (в зависимости от входного напряжения). Самый малогабаритный модуль устройства плавного пуска MCI-3 имеет ширину всего 22.5 мм. Модуль MCI-15 рассчитан на работу с двигателем мощностью до 7.5 кВт при напряжении 480 В.Важной характеристикой пускателей SSRV является плавная остановка двигателя. Устройства...

Для схемы "Устройство плавного пуска электроинструмента"

Случающиеся иногда отказы ручного электроинструмента - шлифовальных машин, электрических дрелей и лобзиков зачастую бывают связаны с их большим пусковым током и значительными динамическими нагрузками на детали редукторов, возникающими при резком пуске двигателя.Устройство плавного пуска коллекторного электродвигателя, описанное в , сложно по схеме, в нем имеется несколько прецизионных резисторов и оно требует кропотливого налаживания. Применив микросхему фазового регулятора КР1182ПМ1 , удалось изготовить немаловажно более простое устройство аналогичного назначения, не требующее налаживания. К нему можно без всякой доработки подключать любой ручной электроинструмент, питающийся от однофазной сети 220 В, 50 Гц. Пуск и остановка двигателя производятся выключателем электроинструмента, причем в его выключенном состоянии устройство ток не потребляет и может неограниченное пора оставаться подключенным к сети. Схема предлагаемого устройства изображена на рисунке. Вилку ХР1 включают в сетевую розетку, а в розетку XS1 вставляют сетевую вилку электроинструмента. Схемы удвоения постоянного напряжения на 2кв Можно установить и соединить параллельно несколько розеток для инструментов, работающих поочередно.При замыкании цепи электроинструмента его собственным выключателем на фазовый регулятор DA1 поступает напряжение. Начинается зарядка конденсатора С2, напряжение на нем постепенно увеличивается. В результате задержка включения внутренних тиристоров регулятора, а с ними и симистора VSI в каждом последующем полупериоде сетевого напряжения уменьшается, что приводит к плавному нарастанию протекающего через мотор и, как следствие, подъему его оборотов. При указанной на схеме емкости конденсатора С2 разгон электродвигателя до мак...

Для схемы "Преобразователь постоянного тока, формирующий два напряжения"

ЭлектропитаниеПреобразователь тока, формирующий два напряженияSteven Sarns.(Донвер, шт. Колорадо)Передача данных по шине RS-232-C - один из многих примеров, когда надобно иметь небольшую плату, обеспечивающую как положительное, так и отрицательное напряжение питания. Схема, приведенная на рисунке, удовлетворяет указанным требованиям и содержит существенно меньшее число компонентов, чем подобные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.Базовая схема такого преобразователя включает в себя источник четырехфазных синхроимпульсов, катушку индуктивности и два переключателя (рис.1). рис.1В течение первой фазы синхроимпульсов катушка индуктивности L запасается энергией через переключатели S1 и S2. Регулятор мощности на тс122 25 В течение второй фазы переключатель S2 размыкается, и энергия передается на шину положительного выходного напряжения. Во пора третьей фазы замыкаются оба переключателя, в результате чего катушка индуктивности снова накапливает энергию. При размыкании переключателя S1 во пора заключительной фазы синхроимпульсов эта энергия передается на отрицательную шину питания.В практической схеме (рис.2) D-триггер U1 формирует четырехфазные синхроимпульсы, а транзисторы Q1 и Q2 выполняют функции переключателей. рис.2При поступлении на вход синхроимпульсов с частотой 8 кГц обеспечивает напряжения ±12 В для питания линейного формирователя ши...

Для схемы "ГЕНЕРАТОР СТАБИЛЬНОГО ТОКА"

Радиолюбителю-конструкторуГЕНЕРАТОР СТАБИЛЬНОГО Генераторами стабильного тока принято называть устройства. выходной ток которых практически не зависит от сопротивления нагрузки. Он может найти применение, например.в омметрах с линейной шкалой. На рис. 1 приведена принципиальная генератора стабильного на двух кремниевых транзисторах. Величина коллекторного транзистора V2 определяется отношениемIк=0,66/R2.Puc.1Например, при R2, равном 2,2 к0м. ток коллектора транзистора V2 будет равен 0,3 мА и остается практически постоянным при изменении сопротивления резистора Rx от 0 до 30 к0м. Схема простого радиопередатчика на 6п45с При необходимости величина постоянного тока может быть увеличена до 3 мА, для этого сопротивление резистора R2 нужно уменьшить до 180 Ом. Дальнейшее подъем при сохранении высокой стабильности его величины как при смене нагрузки, так и при увеличении температуры быть может лишь при использовании трехтранзисторного генератора, показанного на рис.2. При этом транзисторы V2 и V3 должны быть средней мощности, а напряжение второго источника питания - в 2...3 раза больше напряжения питания транзисторов V1, V2. Сопротивление резистора R3 рассчитывается по вышеприведенной формуле, но дополнительно корректируется с учетом разброса характеристик транзисторов. Puc.2"Elektrotehnicar" (СФРЮ), 1976, N 7-8 ...

Для схемы "УКВ гетеродин с ФАПЧ"

Узлы радиолюбительской техникиУКВ гетеродин с ФАПЧГетеродины с фазовой автоподстройкой частоты(ФАПЧ) позволяют довольно простыми средствами решить проблемусоздания высокостабильного источника сигнала переменной частотыдля спортивной УКВ аппаратуры. такого гетеродина приведенана рисунке. Он был применен в приемнике на диапазон 144- 146 МГцс одним преобразованием частоты и промежуточной частотой 10,7МГц.Гетеродин состоит из управляемого генератора натранзисторе V1. опорного кварцевого генератора (КГ) ивысокостабильного генератора диапазона (ГПД), смесителяна транзисторе V3, фазового детектора на диодах V1, V5 иусилителя на микросхеме А1. Схемы на тс106-10 Элементы кварцевогои высокостабильного генератора диапазона на рисунке непоказаны. Управляемый генератор вырабатывает сигнал, изменяющийсяпри подаче управляющего напряжения на варикап V2, в пределах154,7- 156.7 МГц. Сигнал с этого генератора поступает на один иззатворов транзистора V3 и через буферный каскад - на первыйсмеситель приемника. На второй затвор полевого транзистора сопорного кварцевого генератора подается сигнал частотой 161 МГц.Разностный сигнал, частота которого может лежать в пределах4,3-6.3 МГц выделяется на полосовом фильтре L5C10C11L6C12. Этотсигнал совместно с высокочастотным напряжением с генератора диапазона поступает на фазовый детектор. Сигнал ошибки, прошедшийчерез фильтр нижних частот L7C15 и...

Для схемы "Преобразователя постоянного напряжения 12 В в переменное 220 В"

ЭлектропитаниеПреобразователя напряжения 12 В в переменное 220 В Антон Стоилов Предлагается схема преобразователя постоянного напряжения 12 В в переменное 220 В, который при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2-3 часов. Он состоит из задающего генератора на симметричном мультивибраторе VT1, VT2, нагруженного на мощные парафазные ключи VT3-VT8, коммутирующие ток в первичной обмотке повышающего трансформатора TV. VD3 и VD4 защищают мощные транзисторы VT7 и VT8 от перенапряжений при работе без нагрузки. Трансформатор выполнен на магнитопроводе Ш36х36, обмотки W1 и W1" имеют по 28 витков ПЭЛ 2,1, a W2 - 600 витков ПЭЛ 0,59, причем сначала мотают W2, а поверх нее двойным проводом (с поставленной задачей достижения симметрии полуобмоток) W1. При налаживании триммером RP1 добиваются минимальных искажений формы выходного напряжения "Радио Телевизия Електроника" N6/98, с. 12,13....

Для схемы "Универсальный регулятор напряжения и зарядно-пусковое устройство для"

Довольно часто в радиолюбительской практике возникает необходимость регулировки переменного напряжения в пределах 0...220 В. Широко используются для этой цели ЛАТРы (автотрансформаторы). Но их век уже прошел и на смену этим громоздким аппаратам пришли современные тиристорные регуляторы, которые имеют один недостаток: напряжение в таких устройствах регулируется путем изменения длительности импульсов переменного напряжения. Из-за этого к ним невозможно подключить высокоиндуктивную нагрузку (например, трансформатор или дроссель, а также любое другое радиоустройство, содержащее в себе перечисленные выше элементы).От этого недостатка свободен регулятор напряжения, приведенный на рисунке. Он сочетает в себе: устройство защиты от токовых перегрузок, тиристорный регулятор напряжения с мостовым регулятором, рослый КПД (92...98%). Кроме того, регулятор работает совместно с мощным трансформатором и выпрямителем, который может быть использован для заАвтоматическое отключение радиоаппаратуры рядки автомобильных аккумуляторов и в качестве пускового устройства при разряженной АБ.Основные параметры регулятора напряжения:Номинальное напряжение питания, В 220 ± 10%; Выходное напряжение переменного тока, В 0...215; КПД, не менее, процент(ов) 92; Максимальная мощность нагрузки, кВт 2.Основные параметры зарядно-пускового устройства: Выходное напряжение постоянного тока, В 0...40; Постоянный ток, потребляемый нагрузкой, А 0...20; Пусковой ток (при длительности пуска 10 c), A 100.Переключателем SA2 выбирается либо регулировка переменного напряжения в пределах 0...98% от сетевого,...

Для схемы "Тиристорное реле указателя поворотов"

Автомобильная электроникаТиристорное реле указателя поворотовг. Казань А. СТАХОВБесконтактное реле сигнализации поворотов автомобиля может быть сконструировано с использованием кремниевых управляемых диодов - тиристоров. Схема такого реле показана на рисунке.Реле представляет собой обычный мультивибратор на транзисторахТ1 и Т2;, частота переключения которого определяет частоту мигания ламп, так как тот самый мультивибратор управляет выключателем на тиристорах Д1 и Д4.В мультивибраторе могут работать любые маломощные низкочастотные транзисторы.При подключении переключателем П1 сигнальных ламп переднего и заднего подфарников сигнал мультивибратора открывает тиристор Д1 и напряжение аккумуляторной батареи прикладывается к сигнальным лампам. При этом правая обкладка конденсатора С1 заряжается положительно (относительно левой обкладки) через резистор R5. Схема терморегулятора на симисторе Когда запускающий импульс мультивибратора подается на тиристор Д4, то тот самый тиристор открывается и заряженный конденсатор C1 оказывается подсоединенным к тиристору Д1 так, что он мгновенно получает обратное напряжение между анодом и катодом. Это обратное напряжение закрывает тиристор Д1, что прерывает ток в нагрузке. Следующий запускающий импульс мультивибратора снова открывает тиристор Д1 и весь процесс повторяется. Диоды Д223 применены для ограничения отрицательных выбросов тока и улучшения запуска тиристоров.В выключателе могут быть применены любые маломощные тиристоры с любыми буквенными индексами. При использовании ти...

Для схемы "Утюг со звуковой индикацией нагрева"

Предлагаю простой способ замены световой индикации нагрева спирали утюга на звуковую.Микросхему DD1, уже спаянную с динамиком ВА, я взял из музыкальной открытки. Она питается от элемента СЦ21 1,5 В постоянного тока, а лампочка в утюге от 1,5 В переменного тока, поэтому в схему надобно включить диод VD1 КД105Б и конденсатор С1. Мелодия в открытке включалась соединением двух контактов, поэтому их надобно спаять между собой. Этим мы установили режим "начало мелодии". Вынув компонент питания из схемы, освобождаем выводы 1 и 2 для последующего соединения с контактами утюга. К одному из выводов припаиваем диод.Собранная схема подключается к контактам лампочки и закрепляется внутри корпуса утюга. Проверяется схема включением утюга в сеть (мелодия включается) и нагревом спирали до определенной температуры, после чего мелодия выключается, сигнализируя о выключении спирали.Д.Печеньков, Минский р-он...

Для схемы "Микропередатчик со стабилизатором тока"

Радиошпион - Микропередатчик со стабилизатором Схема проста в настройке и изготовлении, позволяет изменять частоту в широких пределах.Устройствосохраняет роботоспособность при величине питающего напряжения више 1В.Рис.1...

Для пуска двигателей постоянного тока могут быть применены три способа:

1) прямой пуск, при котором обмотка якоря подключена непосредственно к сети;

2) реостатный пуск с помощью пускового реостата, включаемого в цепь якоря для ограничения тока при пуске;

3) пуск путем плавного повышения напряжения, подаваемого на обмотку якоря.

Прямой пуск. Обычно в двигателях постоянного тока падение напряжения I ном ∑r во внутреннем сопротивлении цепи якоря составляет 5–10% от U ном , поэтому при прямом пуске ток якоря I п = U ном /∑r = (10 ÷ 20) I ном, что создает опасность поломки вала машины и вызывает сильное искрение под щетками. По этой причине прямой пуск применяют в основном для двигателей малой мощности (до нескольких сотен ватт), в которых сопротивление ∑r относительно велико, и лишь в отдельных случаях–для двигателей с последовательным возбуждением мощностью в несколько киловатт. При прямом пуске таких двигателей I п = (4 ÷ 6) I ном.

Переходный процесс изменения частоты вращения n и тока якоря i a в процессе пуска определяется нагрузкой двигателя и его электромеханической постоянной времени Т м . Для установления характера изменения n и i a при пуске двигателя с параллельным возбуждением будем исходить из уравнений:

где J – момент инерции вращающихся масс электродвигателя и сочлененного с ним производственного механизма; М н –тормозной момент, создаваемый нагрузкой.

Из (2.82б) определяем ток якоря

. (2.83)

Подставляя его значение в (2.82а), получаем

(2.84а)

, (2.84б)

U где – частота вращения при идеальном холостом ходе;

уменьшение частоты вращения при переходе

от холостого хода к нагрузке; n н = n 0 – Δn н –установившаяся частота вращения при нагрузке двигателя; – электромеханическая постоянная времени, определяющая скорость протекания переходного процесса.

При этом I н = М н /(с м Ф) – установившийся ток якоря после окончания процесса пуска, определяемый нагрузочным моментом М н .

Решая уравнение (2.84б), получаем

. (2.85а)

Постоянную интегрирования А находим из начальных условий: при t = 0; n = 0 и А = – n н . В результате имеем

. (2.85б)

Рис. 2.65 – Переходный процесс изменения частоты вращения и тока якоря при прямом пуске двигателя постоянного тока

Зависимость тока якоря от времени при пуске двигателя определяется из (2.83). Подставляя в него значение

, (2.85в)

полученное из (2.846) и (2.856), и заменяя n н = n 0 – Δn, имеем

. (2.86а)

Учитывая значение Δn н , n 0 , Т м и М н /с м Ф , получим

где I нач = U /∑r – начальный пусковой ток.

На рис. 2.65 приведены зависимости изменения тока якоря и частоты вращения (в относительных единицах) при прямом пуске двигателя с параллельным возбуждением. Время переходного процесса при пуске принимается равным (3–4) Т м. За это время частота вращения n достигает (0,95 – 0,98) от установившегося значения n н , а ток якоря I а также приближается к установившемуся значению.


Реостатный пуск. Этот способ получил наибольшее распространение. В начальный момент пуска при n = 0 ток I п = U/(r + r п). Максимальное сопротивление пускового реостата r п подбирается так, чтобы для машин большой и средней мощностей ток якоря при пуске I п = (1,4 ÷ 1,8) I ном, а для машин малой мощности I п = (2 ÷ 2,5) I ном. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением. В начальный период пуск осуществляется по реостатной характеристике 6 (рис. 2.66, а ), соответствующей максимальному значению сопротивления r п пускового реостата; при этом двигатель развивает максимальный пусковой момент М п.макс.

Рис. 2.66 – Изменение частоты вращения и момента при реостатном пуске двигателей с параллельным и последовательным возбуждением

Регулировочный реостат r р. в в этом случае выводится так, чтобы ток возбуждения I в и поток Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением частоты вращения растет э. д. с. Е и уменьшается ток якоря I a =(U – E)/(r +r п ). При достижении некоторого значения М п.мин часть сопротивления пускового реостата выводится, вследствие чего момент снова возрастает до М п.макс. При этом двигатель переходит на работу по реостатной характеристике 5 и разгоняется до достижения M п.мин. Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатных характеристик 6,5,4,3 и 2 (см. жирные линии на рис. 2.66, а ) до выхода на естественную характеристику 1 . Средний вращающий момент при пуске М п.ср = 0,5 (М п.макс +М п.мин) = const, вследствие чего двигатель разгоняется с некоторым постоянным ускорением. Таким же образом пускается в ход двигатель с последовательным возбуждением (рис. 2.66, б ). Количество ступеней пускового реостата зависит от жесткости естественной характеристики и требований, предъявляемых к плавности пуска (допустимой разности M п.макс – М п.мин).

Пусковые реостаты рассчитывают на кратковременную работу под током.

На рис. 2.67 показаны зависимости тока якоря i a , электромагнитного момента М, момента нагрузки М н и частоты вращения n при реостатном пуске двигателя (упрощенные диаграммы).

Рис. 2.67 – Переходный процесс изменения частоты вращения, момента и тока якоря при реостатном пуске двигателя постоянного тока

При выводе отдельных ступеней пускового реостата ток якоря i a достигает некоторого максимального значения, а затем уменьшается согласно уравнению (2.85б) до минимального значения. При этом электромеханическая постоянная времени и начальный ток будут иметь различные для каждой ступени пускового реостата значения:

;

В соответствии с изменением тока якоря изменяется и электромагнитный момент М. Частота вращения n изменяется согласно уравнению

где n нач –начальная частота вращения при работе на соответствующей ступени пускового реостата.

Заштрихованная на рис. 2.67 область соответствует значениям динамического момента М дин = М М н,обеспечивающего разгон двигателя до установившейся частоты вращения.

Пуск путем плавного повышения питающего напряжения. При реостатном пуске возникают довольно значительные потери энергии в пусковом реостате. Этот недостаток можно устранить, если пуск двигателя осуществлять путем плавного повышения напряжения, подаваемого на его обмотку. Но для этого необходимо иметь отдельный источник постоянного тока с регулируемым напряжением (генератор или управляемый выпрямитель). Такой источник используют также для регулирования частоты вращения двигателя.

Плавный пуск

коллекторного двигателя постоянного тока

(ДПТ)

Случается необходимость плавно включить коллекторный двигатель, например с целью предотвращения бросков токов в цепях питания. Либо предотвращения резких ударов на трансмиссию привода. Не лишне поставить на включение фар, для увеличения ресурса работы ламп.

В моем случае требовалось подать максимальную мощность на ходовой электродвигатель электромобиля с выводом электронного ключа управления из режима ШИМ-управления, для предотвращения его перегрева при максимальной нагрузке.

На рис. 1 и рис. 2 приведены две схемы реализации таких устройств.

Конструкция 1:

Простая схема схема плавного пуска на интегральном таймере КР1006ВИ1 (или импортная серия 555)

Рис.1. Конструкция 1

При подаче напряжения 12в таймер с элементами обвязки (ШИМ) запускается и начинает генерировать импульсы на выходе 3 ИС с постоянной частотой и изменяющийся во времени шириной следования импульса. Время задается емкостью конденсатора С1. Далее, эти импульсы подаются на затвор мощного полевого транзистора который управляет нагрузкой на выходе устройства. R3 строго 2Мом. Рабочее напряжение электролитических конденсаторов 25 вольт.
Примечание: Данное устройство размещается максимально близко к вентилятору иначе могут образоваться помехи, которые будут мешать нормальной работе автомобиля (естественно "Жигулям" не помеха).

Конструкция 2:

Не менее простая схема на том же интегральном таймере.

Рис.2 Конструкция 2

Конструкция 3:

Схема примененная на электромобиле. Запуск устройства производится кнопкой "Пуск".

Рис.2 Конструкция 3

Значение резистора R2 должно быть не менее 2.2 мом, иначе не будет полного (100%) открытия транзисторов.
Питание схемы ограничено на уровне 7.5в с помощью стабилитрона КС175Ж с целью ограничения напряжения управления подаваемого на затвор транзисторов. Иначе базы транзисторов входят в насыщение.
Включение устройства производится кнопкой "Вкл" подачей питания, с одновременной разблокировкой силовых транзисторов. При выключении устройства предотвращается линейный режим при снижении питания цепей управления, транзисторы мгновенно закрываются.