Конденсатор имеет. Виды конденсаторов и их применение. Электрическое сопротивление изоляции конденсатора - r

Конденсатором называется элемент электрической цепи, служащий в качестве накопителя заряда.

Областей применения этого устройства сейчас много, чем и обусловлен их большой ассортимент. Они различаются по материалам, из которых изготовлены, назначению, диапазону основного параметра. Но главной характеристикой конденсатора является его емкость.

Принцип работы конденсатора

Конструкция

На схемах конденсатор обозначается в виде двух параллельных линий, не связанных между собой:

Это соответствует его простейшей конструкции - двум пластинам (обкладкам), разделенным диэлектриком. Фактическое исполнение этого изделия чаще всего представляет собой завернутые в рулон обкладки с прослойкой диэлектрика или иные причудливые формы, но суть остается той же самой.

Электрическая ёмкость – способность проводника накапливать электрические заряды. Чем больше заряд вмещает проводник при данной разности потенциалов, тем больше ёмкость. Зависимость между зарядом Q и потенциалом φ выражается формулой:

где Q — заряд в кулонах (Кл), φ — потенциал в вольтах (В).

Емкость измеряется в фарадах (Ф), что вы помните еще с уроков физики. На практике чаще встречаются более мелкие единицы: миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ).

Накопительная способность зависит от геометрических параметров проводника, диэлектрической проницаемости среды, где он находится. Так, для сферы из проводящего материала она будет выражаться формулой:

C=4πεε0R

где ε0-8,854·10^−12 Ф/м, электрическая постоянная, а ε — диэлектрическая проницаемость среды (табличная величина для каждого вещества).

В реальной жизни нам чаще приходится иметь дело не с одним проводником, а с системами таковых. Так, в обычном плоском конденсаторе емкость будет прямо пропорциональна площади пластин и обратно - расстоянию между ними:

C=εε0S/d

ε здесь - диэлектрическая проницаемость прокладки между пластинами.

Емкость параллельных и последовательных систем

Параллельное соединение емкостей представляет собой один большой конденсатор с тем же слоем диэлектрика и суммарной площадью пластин, поэтому общая емкость системы представляет собой сумму таковых у каждого из элементов. Напряжение при параллельном соединении будет одним и тем же, а заряд распределится между элементами схемы.​

C=C1+C2+C3

Последовательное соединение конденсаторов характеризуется общим зарядом и распределенным напряжением между элементами. Поэтому суммируется не емкость, а обратная ей величина:

1/C=1/С1+1/С2+1/С3

Из формулы емкости одиночного конденсатора можно вывести, что при одинаковых элементах, соединенных последовательно, их можно представить в виде одного большого с той же площадью обкладки, но с суммарной толщиной диэлектрика.

Реактивное сопротивление

Конденсатор не может проводить постоянный ток, что видно из его конструкции. В такой цепи он может только заряжаться. Зато в цепях переменного тока он прекрасно работает, постоянно перезаряжаясь. Если не ограничения, исходящие из свойств диэлектрика (его можно пробить при превышении предела напряжения), этот элемент заряжался бы бесконечно (т. н. идеальный конденсатор, что-то вроде абсолютно черного тела и идеального газа) в цепи постоянного тока, а ток через него проходить не будет. Проще говоря, сопротивление конденсатора в цепи постоянного тока бесконечно.

При переменном токе ситуация иная: чем выше частота в цепи, тем меньше сопротивление элемента. Такое сопротивление называется реактивным, и оно обратно пропорционально частоте и емкости:

Z=1/2πfC

где f — частота в герцах.

Накопитель энергии

Энергия, запасенная заряженным конденсатором, может быть выражена формулой:

E=(CU^2)/2=(q^2)/2C

где U — напряжение между обкладками, а q — накопленный заряд.

Конденсатор в колебательном контуре

В замкнутом контуре, содержащем катушку и конденсатор, может быть сгенерирован переменный ток.

После зарядки конденсатора он начнет саморазряжаться, давая возрастающий по силе ток. Энергия разряженного конденсатора станет равной нулю, зато магнитная энергия катушки - максимальной. Изменение величины тока вызывает ЭДС самоиндукции катушки, и она по инерции пропустит ток в сторону второй обкладки, пока та полностью не зарядится. В идеальном случае такие колебания бесконечны, а в реальности они быстро затухают. Частота колебаний зависит от параметров как катушки, так и конденсатора:

где L — индуктивность катушки.

Конденсатор может обладать собственной индуктивностью, что можно наблюдать при повышении частоты тока в цепи. В идеальном случае эта величина незначительна, и ей можно пренебречь, но в реальности, когда обкладки представляют собой свернутые пластинки, не считаться с этим параметром нельзя, особенно если речь идет о высоких частотах. В таких случаях конденсатор совмещает в себе две функции, и представляет собой своеобразный колебательный контур с собственной резонансной частотой.

Эксплуатационные характеристики

Помимо указанных выше емкости, собственной индуктивности и энергоемкости, реальные конденсаторы (а не идеальные) обладают еще рядом свойств, которые нужно учитывать при выборе этого элемента для цепи. К ним относятся:

Чтобы понять, откуда берутся потери, необходимо разъяснить, что представляют собой графики синусоидальных тока и напряжения в этом элементе. Когда конденсатор заряжен максимально, ток в его обкладках равен нулю. Соответственно, когда ток максимален, напряжение отсутствует. То есть напряжение и ток сдвинуты по фазе на угол 90 градусов. В идеале конденсатор обладает только реактивной мощностью:

Q=UIsin 90

В реальности же обкладки конденсатора обладают собственным сопротивлением, а часть энергии расходуется на нагрев диэлектрика, что обуславливает ее потери. Чаще всего они незначительны, но иногда ими пренебрегать нельзя. Основной характеристикой этого явления служит тангенс угла диэлектрических потерь, представляющий собой отношение активной мощности (даваемой малыми потерями в диэлектрике) и реактивной. Измерить эту величину можно теоретически, представив реальную емкость в виде эквивалентной схемы замещения - параллельной или последовательной.

Определение тангенса угла диэлектрических потерь

При параллельном соединении величина потерь определяется отношением токов:

tgδ = Ir/Ic = 1/(ωCR)

В случае последовательного соединения угол вычисляется соотношением напряжений:

tgδ = Ur/Uc = ωCR

В реальности для замеров tgδ пользуются прибором, собранным по мостовой схеме. Его применяют для диагностики потерь в изоляции у высоковольтного оборудования. С помощью измерительных мостов можно измерять и другие параметры сетей.

Номинальное напряжение

Этот параметр указывается на маркировке. Он показывает предельную величину напряжения, которое может быть подано на обкладки. Превышение номинала может привести к пробою конденсатора и выходу его из строя. Зависит этот параметр от свойств диэлектрика и его толщины.

Полярность

Некоторые конденсаторы имеют полярность, то есть в схему его необходимо подключать строго определенным образом. Связано это с тем, что в качестве одной из обкладок используется какой-либо электролит, а диэлектриком служит оксидная пленка на другом электроде. При изменении полярности электролит просто разрушает пленку и конденсатор перестает работать.

Температурный коэффициент емкости

Он выражается отношением ΔC/CΔT где ΔT — изменение температуры окружающей среды. Чаще всего эта зависимость линейна и незначительна, но для конденсаторов, работающих в агрессивных условиях, ТКЕ указывается в виде графика.

Выход конденсатора из строя обусловлен двумя основными причинами - пробоем и перегревом. И если в случае пробоя некоторые их виды способны к самовосстановлению, то перегрев со временем приводит к разрушению.

Перегрев обусловлен как внешними причинами (нагреванием соседних элементов схемы), так и внутренними, в частности, последовательным эквивалентным сопротивлением обкладок. В электролитических конденсаторах он приводит к испарению электролита, а в оксиднополупроводниковых - к пробою и химической реакции между танталом и оксидом марганца.

Опасность разрушения в том, что часто оно происходит с вероятностью взрыва корпуса.

Техническое исполнение конденсаторов

Классифицировать конденсаторы можно по нескольким группам. Так, в зависимости от возможности регулировать емкость их разделяют на постоянные, переменные и подстроечные. По своей форме они могут быть цилиндрическими, сферическими и плоскими. Можно делить их по назначению. Но самой распространенной классификацией является таковая по типу диэлектрика.

Бумажные конденсаторы

В качестве диэлектрика используется бумага, очень часто — промасленная. Как правило, такие конденсаторы отличает большой размер, но были варианты и в небольшом исполнении, без промасливания. Используются в качестве стабилизирующих и накопительных устройств, а из бытовой электроники постепенно вытесняются более современными пленочными моделями.

При отсутствии промасливания имеют существенный недостаток - реагируют на влажность воздуха даже при герметичной упаковке. Промокшая бумага увеличивает энергопотери.

Диэлектрик в виде органических пленок

Пленки могут быть выполнены из органических полимеров, таких как:

  • полиэтилентерифталат;
  • полиамид;
  • поликарбонат;
  • полисульфон;
  • полипропилен;
  • полистирол;
  • фторопласт (политетрафторэтилен).

По сравнению с предыдущими, такие конденсаторы имеют более компактные размеры, не увеличивают диэлектрические потери при увеличении влажности, но многие из них подвергаются риску выхода из строя при перегреве, а те, что этого недостатка лишены, отличаются более высокой стоимостью.

Твердый неорганический диэлектрик

Это может быть слюда, стекло и керамика.

Преимуществом этих конденсаторов считается их стабильность и линейность зависимости емкости от температуры, приложенного напряжения, а у некоторых - даже от радиации. Но иногда сама такая зависимость становится проблемой, и чем она менее выражена, тем дороже изделие.

Оксидный диэлектрик

С ним выпускаются алюминиевые, твердотельные и танталовые конденсаторы. Они имеют полярность, поэтому выходят из строя при неправильном подключении и превышении номинала напряжения. Но при этом они обладают хорошей емкостью, компактны и стабильны в работе. При правильной эксплуатации могут работать около 50 тыс. часов.

Вакуум

Такие устройства представляют собой стеклянную или керамическую колбу с двумя электродами, откуда выкачан воздух. В них практически отсутствуют потери, но малая емкость и хрупкость ограничивают сферу их применения радиостанциями, где величина емкости не так важна, а вот устойчивость к нагреву имеет принципиальное значение.

Двойной электрический слой

Если посмотреть, для чего нужен конденсатор, то можно понять, что этот тип - не совсем он. Скорее, это дополнительный или резервный источник питания, в качестве чего они и используются. Одни категория таких устройств - ионисторы - содержат в себе активированный уголь и слой электролита, другие работают на ионах лития. Емкость этих приборов может составлять до сотен фарад. К их недостаткам можно отнести высокую стоимость и активное сопротивление с токами утечки.

Каким бы ни был конденсатор, есть два обязательным параметра, которые должны быть отражены в маркировке - это его емкость и номинальное напряжение.

Помимо этого, на большинстве из них существует цифро-буквенное обозначение его характеристик. В соответствии с российскими стандартами конденсаторы маркируются четырьмя знаками.

Первая буква К означает «конденсатор», следующая цифра - вид диэлектрика, далее следует указатель назначения в виде буквы; последний значок может означать как тип конструкции, так и номер разработки, это уже зависит от завода-изготовителя. Третий пункт часто пропускается. Используется такая маркировка на достаточно крупных изделиях, где ее можно разместить. По ГОСТ расшифровка будет выглядеть так:

Первые буквы:

  1. К - конденсатор постоянной емкости.
  2. КТ - подстроечник.
  3. КП - конденсатор переменной емкости.

Вторая группа - тип диэлектрика:

На маленьких конденсаторах всего этого не разместить, поэтому там применяется сокращенная маркировка, которая с непривычки может даже потребовать калькулятора, а иногда - лупу. В этой маркировке зашифрованы емкость, номинал напряжения и отклонения от основного параметра. Остальные параметры наносить нет смысла: это, как правило, керамические конденсаторы.

Маркировка керамических конденсаторов

Иногда с ними все просто - емкость отмечена числом и единицами: pF - пикофарад, nF - нанофарад, μF — микрофарад, mF - миллифарад. То есть, надпись 100nF можно читать прямо. Номинал, соответственно, числом и буквой V. Но иногда не умещается и это, потому применяют сокращения. Так, часто емкость умещается в трех цифрах (103, 109 и т. д.), где последняя означает число нулей, а первые две - емкость в пикофарадах. Если в конце стоит цифра 9, значит, нулей нет, а между первыми двумя ставят запятую. При цифре 8 на конце запятую переносят еще на один знак назад.

Например, обозначение 109 расшифровывается как 1 пикофарад, а 100–10 пикофарад; 681–680 пикофарад, или 0,68 нанофарад, а 104- 100 тыс. пФ или 100нФ

Часто можно встретить первую букву единицы измерения в качестве запятой: p50–0,5 пФ, 1n5–1,5 нФ, 15μ – 15 мкФ, 15m – 15 мФ. Иногда вместо p пишется R.

После трех цифр может стоять буква, означающая разброс параметра емкости:

Если вы высчитываете характеристику цепи в единицах СИ, то для того, чтобы найти емкость в фарадах, необходимо помнить показатели степеней числа 10:

  1. -3 — миллифарады;
  2. -6 — микрофарады;
  3. -9 — нанофарады;
  4. -12 — пикофарады.

Таким образом, 01 пФ - это 0,1 *10^-12 Ф.

На устройствах SMD емкость в пикофарадах обозначает буква, а цифра после нее - степень 10, на которую надо умножить это значение.

буква C буква C буква C буква C
A 1 J 2,2 S 4,7 a 2,5
B 1,1 K 2,4 T 5,1 b 3,5
C 1,2 L 2,7 U 5,6 d 4
D 1,3 M 3 V 6,2 e 4,5
E 1,5 N 3,3 W 6,8 f 5
F 1,6 P 3,6 X 7,5 m 6
G 1,8 Q 3,9 Y 8,2 n 7
Y 2 R 4,3 Z 9,1 t 8

Номинальное рабочее напряжение таким же образом может маркироваться буквой, если полностью его написать проблематично. В России принят следующий стандарт буквенного обозначения номинала:

буква V буква V
I 1 K 63
R 1,6 L 80
M 2,5 N 100
A 3,2 P 125
C 4 Q 160
B 6,3 Z 200
D 10 W 250
E 16 X 315
F 20 T 350
G 25 Y 400
H 32 U 450
S 40 V 500
J 50

Несмотря на списки и таблицы, лучше все-таки изучить кодировку конкретного производителя - в разных странах они могут отличаться.

К некоторым конденсаторам прилагается более развернутое описание их характеристик.






В электрической цепи каждого прибора есть такой элемент, как конденсатор. Это он служит для наполнения энергией, которая нужна для правильной и бесперебойной работы оборудования.

Что такое конденсатор

Каждый конденсатор - это устройство, обладающее набором технических параметров, которые стоит рассмотреть детально.

Конденсаторы можно встретить во многих отраслях электротехники. Их непосредственная область применения:

  • Создание цепей, колебательных контуров.
  • Получение импульса с большим количеством мощности.
  • В промышленной электротехнике.
  • В изготовлении датчиков.
  • Усовершенствование работы защитных устройств.

Емкость конденсатора

Для каждого конденсатора главный параметр - это его емкость. У каждого устройства она своя и измеряется она в Фарадах. В основе электроники и радиотехники используют конденсаторы с миллионной долей Фарад. Чтобы узнать номинальную емкость устройства, достаточно просмотреть его корпус, на котором имеется вся информация. Показания емкости могут изменяться из-за следующих параметров:

  • Общая площадь всех обкладок.
  • Расстояние между ними.
  • Материал, из которого сделан диэлектрик.
  • Температура окружающей среды.

Наряду с номинальной емкостью существует еще и реальная. Ее значение намного ниже предыдущей. По реальной емкости можно определить основные электрические параметры. Емкость определяют от заряда обкладки и ее напряжения. Максимальная емкость может достигать нескольких десятков Фарад. Конденсатор может также быть охарактеризован удельной емкостью. Это отношение емкости и объема диэлектрика. Маленькая толщина диэлектрика обеспечивает большое значение удельной емкости. Каждый конденсатор может изменять свою емкость, и делятся они на следующие типы:

  • Постоянные конденсаторы - они практически не меняют свою емкость.
  • Переменные конденсаторы - значение емкости изменяется в ходе работы оборудования.
  • Подстроечные конденсаторы - изменяют свою емкость от регулировки аппаратуры.

Напряжение конденсатора

Напряжение считается еще одним из важных параметров. Чтобы конденсатор выполнял свои функции в полном объеме, нужно знать точное показание напряжения. Оно указывается на корпусе устройства. Номинальное напряжение напрямую зависит от сложности конструкции конденсатора и основных свойств материалов, используемых при его изготовлении. Напряжение, подаваемое на конденсатор, должно полностью совпадать с номинальным. Многие устройства при работе нагреваются, в таком случае напряжение понижается. Часто из-за большой разницы в напряжениях конденсатор может перегореть или взорваться. Также это происходит из-за утечки или повышения сопротивления. Для безопасной работы конденсатора его оснащают защитным клапаном и насечкой на корпусе. Как только происходит увеличение давления, клапан автоматически открывается, и по намеченной насечке корпус ломается. Из конденсатора в таком случае электролит выходит в виде газа и не происходит никакого взрыва.

Допуски конденсаторов

Самый простой конденсатор - это два электрода, сделанные в форме пластин, которые разделяются тонкими изоляторами. Каждое устройство имеет отклонение, которое допустимо при его работе. Эту величину также можно узнать по маркировке устройства. Его допуск измеряется и указывается в процентном соотношении и может лежать в пределах от 20 до 30%. Для электротехники, которая должна работать с высокой точностью, можно использовать конденсаторы с маленьким значением допуска, не больше 1%.
Приведенные параметры являются основными для работы конденсатора. Зная их значения, можно использовать конденсаторы для самостоятельной сборки аппаратов или машин.

Виды конденсаторов

Существует несколько основных видов конденсаторов, которые используют в различной технике. Итак, стоит рассмотреть каждый вид, его описания и свойства:


У каждого конденсатора свое предназначение, поэтому их дополнительно классифицируют на общие и специальные. Общие конденсаторы применяют в любых видах и классах аппаратуры. В основном это низковольтные устройства. Специальные конденсаторы - это все остальные виды устройств, которые являются высоковольтными, импульсными, пусковыми и другими различными видами.

Особенности плоского конденсатора

Так как конденсатор - это устройство, предназначенное для накопления напряжения и его дальнейшего распределения, поэтому нужно выбирать его с хорошей электроемкостью и «пробивным» напряжением. Одним из таких является плоский конденсатор. Выпускается он в виде двух тонких пластин определенной площади, которые расположены на близком расстоянии друг от друга. Плоский конденсатор обладает двумя зарядами: положительным и отрицательным.

Пластины плоского конденсатора между собой имеют однородное электрическое поле. Этот тип устройства не вступает во взаимодействие с другими приборами. Пластина конденсатора способна усиливать электрическое поле.

Правильный заряд конденсатора

Он является хранилищем для электрических зарядов, которые должны постоянно заряжаться. Заряд конденсатора происходит за счет подключения его к сети. Чтобы зарядить устройство, нужно правильно подсоединить его. Для этого берут цепь, которая состоит из разряженного конденсатора с емкостью, резистором, и подключают к питанию с постоянным напряжением.

Разряжается конденсатор по следующему типу: замыкают ключ, и пластины его соединяются между собой. В это время конденсатор разряжается, и между его пластинами исчезает электрическое поле. Если конденсатор разряжается через провода, то на это уйдет много времени, так как в них накапливается много энергии.

Зачем нужен контур конденсатора

В контурах находятся конденсаторы, которые изготавливаются из пары пластин. Для их изготовления берут алюминий или латунь. Хорошая работа радиотехники зависит от правильной настройки контуров. Самая обычная цепь контура состоит из одной катушки и конденсатора, которые между собой замкнуты в электрическую цепь. Есть условия, которые влияют на появление колебаний, поэтому чаще всего контур конденсатора называют колебательным.

Заключение

Конденсатор - это пассивное устройство в электрической цепи, которое используется в качестве емкости для хранения электричества. Чтобы средство для накопления энергии в электрических цепях, именуемое конденсатором, проработало долго, нужно следовать указанным условиям, которые прописаны на корпусе устройства. Область применения широкая. Используют конденсаторы в радиоэлектронике и различной аппаратуре. Подразделяются устройства на много разных видов и выпускаются многообразной конструкцией. Конденсаторы могут соединяться двумя видами: параллельным и последовательным. Также на корпусе устройства есть информация о емкости, напряжении, допуске и его типе. Стоит запомнить, что при подключении конденсатора стоит соблюдать полярность. В противном случае устройство быстро выйдет из строя.

Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

Что такое электрический конденсатор

Если говорить по-русски, то конденсатор можно обозвать "накопитель". Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток -- это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он "наестся"? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

Как устроен электрический конденсатор

В школе тебе рассказывали, что конденсатор -- это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

Принцип работы

Общий принцип работы достаточно прост: подали напряжение -- заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

Конденсатор в цепи постоянного тока

Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А -- отсутствие тока в цепи. Что случилось?

Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C - ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

Конденсатор в цепи переменного тока

Что такое переменный ток? Это когда электроны "бегут" сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то "+" заряд, то "-". Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток "беспрепятственно" проходит через конденсатор.

Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

Реактивное сопротивление конденсатора

Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

Другое дело ток переменный -- он проходит, но испытывает со стороны конденсатора сопротивление:

f - частота, С - ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

Где используются конденсаторы

Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

Какие бывают конденсаторы

Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

Радиолюбители, особенно как мы -- начинающие -- особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в "пакет" и запаковывались в корпус.

Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Бумажные конденсаторы

Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок -- алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен -- у них и провода односторонней проводимости бывают...

В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


У конденсаторов этого типа есть два неоспоримых преимущества. Первое -- можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе -- это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

Электролитические кондесаторы


Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

Продолжение следует...

Во второй части я планирую показать примеры типичного использования конденсаторов..

Конденсатор , кондер , кондюк - так его называют бывалые” специалисты один из самых распространенных элементов применяемое в различных электрических цепях. Конденсатор способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейший конденсатор состоят из двух пластинчатых электродов, разделенных диэлектриком, на этих электродах накапливается электрический заряд разной полярности, на одной пластин будет положительный заряд на другой отрицательный.

Принцип работы конденсатора и его назначение - постараюсь кратко и предельно понятно ответить на эти вопросы. В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь.

При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это - конденсатор постоянной емкости, обозначается он так -

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть - металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Электролитический конденсатор

Следующий распространенный тип конденсаторов это - полярные электролитические конденсаторы , его изображение на электрической схеме выглядит так -

Электролитический конденсатор так же можно назвать постоянным конденсатором, потому, что их емкость не меняется.

Но электролитические конденсаторы имеют очень важно отличие, знак (+) возле одного из электродов конденсатора говорит о том, что это полярный конденсатор и при подключении его в цепь нужно соблюдать полярность. Плюсовой электрод необходимо подключить к плюсу источника питания, а минусовой (который без плюсика) соответственно к отрицательному - (на корпусе современных конденсаторов наносят обозначение минусового электрода, а вот плюсовой не обозначают никак).


Не соблюдение этого правила может привести к выходу конденсатора из строя и даже взрыву, сопровождающемуся разлетом бумаги фольги и нехорошим запахом (от конденсатора конечно…). Электролитические конденсаторы могут иметь очень большую емкость и соответственно накапливать, довольно большой потенциал. Поэтому электролитические конденсаторы даже после отключения питания таят в себе опасность, и при неосторожном обращении ты можешь получить сильный удар электрического тока. Поэтому после снятия напряжения для безопасной работы с электрическим устройством (ремонте электроники , настройке, и т.д.) электролитический конденсатор необходимо разрядить, замкнув накоротко его электроды, (делать это нужно специальным разрядником) особенно это касается конденсаторов большой емкости которые установлены на блоках питания, где есть высокое напряжение.

Конденсаторы переменной емкости.


Как ты понял из названия переменные конденсаторы могут изменять свою емкость - например при настройке радиоприемников. Еще совсем недавно для настройки радиоприемников на нужную станцию использовались только конденсаторы переменной емкости, вращая ручку настройки приемника тем самым изменяли емкость конденсатора. Переменные конденсаторы используются и посей день в простых недорогих моделях приемников и передатчиков. Конструкция переменного конденсатора очень простая. Конструктивно он состоит из статорных и роторных пластин, роторные пластины подвижные и входят в статорные е касаясь последних. Диэлектриком в таком конденсаторе является воздух. При входе статорных пластин в роторные емкость конденсатора увеличивается, при выходе роторных пластин емкость уменьшается. Обозначение переменного конденсатора выгляди так -

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы нашли широкое применение во всех областях электротехники, они используются в различных электрических цепях.
В электроцепи переменного тока они могут служить в качестве ёмкостного сопротивления. Возьмем такой пример, при последовательном подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет.


Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора.

Благодаря этим качествам, конденсаторы применяются в качестве фильтров, в цепях подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных импульсных схемах, где требуется быстрое накопление и отдача большого электрического заряда, в ускорителях, фотовспышках, импульсных лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, создавая мощный импульс. Конденсаторы применяют для сглаживания пульсаций при выпрямлении напряжения. Способность конденсатора сохранять заряд длительное время дает возможность использовать их для хранения информации. И это только очень краткий перечень всего где может применяться конденсатор.

Продолжая занятия электротехникой, ты откроешь для себя еще много интересного в том числе и о работе и применению конденсаторов. Но, и этой информации, тебе будет достаточно для общего понимания и продвижения дальше.

Как проверить конденсатор

Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр . Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки - к ак прозванивать мультиметром , как и при проверке резисторов - что такое резистор . Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Электролитические конденсаторы проверяют следующим образом - Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем. После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.


Емкость конденсатора измеряется в Фарадах, 1 фарад - это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах (nF). Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе. Желаю успеха и настойчивости!

— это электрический (электронный) компонент, состоящий из двух проводников (обкладок), разделенных между собой слоем диэлектрика. Существует много видов конденсаторов. В основном они делятся по материалу из которого изготовлены обкладки и по типу используемого диэлектрика между ними.

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al 2 O 3),

Свойства:

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta 2 O 5).

Свойства:

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую .

Конденсаторы с воздушным диэлектриком

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).