Уровень статистической значимости (р). Основные термины и понятия медицинской статистики

Как вы думаете, что делает вашу «вторую половинку» особенной, значимой? Это связано с ее (его) личностью или с вашими чувствами, которые вы испытываете к этому человеку? А может, с простым фактом, что гипотеза о случайности вашей симпатии, как показывают исследования, имеет вероятность менее 5%? Если считать последнее утверждение достоверным, то успешных сайтов знакомств не существовало бы в принципе:

Когда вы проводите сплит-тестирование или любой другой анализ вашего сайта, неверное понимание «статистической значимости» может привести к неправильной интерпретации результатов и, следовательно, ошибочным действиям в процессе оптимизации конверсии. Это справедливо и для тысяч других статистических тестов, проводимых ежедневно в любой существующей отрасли.

Чтобы разобраться, что же такое «статистическая значимость», необходимо погрузиться в историю появления этого термина, познать его истинный смысл и понять, как это «новое» старое понимание поможет вам верно трактовать результаты своих исследований.

Немного истории

Хотя человечество использует статистику для решения тех или иных задач уже много веков, современное понимание статистической значимости, проверки гипотез, рандомизации и даже дизайна экспериментов (Design of Experiments (DOE) начало формироваться только в начале 20-го столетия и неразрывно связано с именем сэра Рональда Фишера (Sir Ronald Fisher, 1890-1962):

Рональд Фишер был эволюционным биологом и статистиком, который имел особую страсть к изучению эволюции и естественного отбора в животном и растительном мире. В течение своей прославленной карьеры он разработал и популяризировал множество полезных статистических инструментов, которыми мы пользуемся до сих пор.

Фишер использовал разработанные им методики, чтобы объяснить такие процессы в биологии, как доминирование, мутации и генетические отклонения. Те же инструменты мы можем применить сегодня для оптимизации и улучшения контента веб-ресурсов. Тот факт, что эти средства анализа могут быть задействованы для работы с предметами, которых на момент их создания даже не существовало, кажется довольно удивительным. Столь же удивительно, что раньше сложнейшие вычисления люди выполняли без калькуляторов или компьютеров.

Для описания результатов статистического эксперимента как имеющих высокую вероятность оказаться истиной Фишер использовал слово «значимость» (от англ. significance).

Также одной из наиболее интересных разработок Фишера можно назвать гипотезу «сексуального сына». Согласно этой теории, женщины отдают свое предпочтение неразборчивым в половых связях мужчинам (гулящим), потому что это позволит рожденным от этих мужчин сыновьям иметь такую же предрасположенность и произвести на свет больше своих отпрысков (обращаем внимание, что это всего лишь теория).

Но никто, даже гениальные ученые, не застрахованы от совершения ошибок. Огрехи Фишера досаждают специалистам и по сей день. Но помните слова Альберта Эйнштейна: «Кто никогда не ошибался, тот не создавал ничего нового».

Прежде чем перейти к следующему пункту, запомните: статистическая значимость — это ситуация, когда разница в результатах при проведении тестирования настолько велика, что эту разницу нельзя объяснить влиянием случайных факторов.

Какова ваша гипотеза?

Чтобы понять, что значит «статистическая значимость», сначала нужно разобраться с тем, что такое «проверка гипотез», поскольку два этих термина тесно переплетаются.
Гипотеза — это всего лишь теория. Как только вы разработаете какую-либо теорию, вам будет необходимо установить порядок сбора достаточного количества доказательств и, собственно, собрать эти доказательства. Существует два типа гипотез.

Яблоки или апельсины — что лучше?

Нулевая гипотеза

Как правило, именно в этом месте многие испытывают трудности. Нужно иметь в виду, что нулевая гипотеза — это не то, что нужно доказать, как, например, вы доказываете, что определенное изменение на сайте приведет к повышению конверсии, а наоборот. Нулевая гипотеза — это теория, которая гласит, что при внесении каких-либо изменений на сайт ничего не произойдет. И цель исследователя — опровергнуть эту теорию, а не доказать.

Если обратиться к опыту раскрытия преступлений, где следователи также строят гипотезы в отношении того, кто является преступником, нулевая гипотеза принимает вид так называемой презумпции невиновности, концепта, согласно которому обвиняемый считается невиновным до тех пор, пока его вина не будет доказана в суде.

Если нулевая гипотеза заключается в том, что два объекта равны в своих свойствах, а вы пытаетесь доказать, что один из них все же лучше (например, A лучше B), вам нужно отказаться от нулевой гипотезы в пользу альтернативной. Например, вы сравниваете между собой тот или иной инструмент для оптимизации конверсии. В нулевой гипотезе они оба оказывают на объект воздействия одинаковый эффект (или не оказывают никакого эффекта). В альтернативной — эффект от одного из них лучше.

Ваша альтернативная гипотеза может содержать числовое значение, например, B - A > 20%. В таком случае нулевая гипотеза и альтернативная могут принять следующий вид:

Другое название для альтернативной гипотезы — это исследовательская гипотеза, поскольку исследователь всегда заинтересован в доказательстве именно этой гипотезы.

Статистическая значимость и значение «p»

Вновь вернемся к Рональду Фишеру и его понятию о статистической значимости.

Теперь, когда у вас есть нулевая гипотеза и альтернативная, как вы можете доказать одно и опровергнуть другое?

Поскольку статистические данные по самой своей природе предполагают изучение определенной совокупности (выборки), вы никогда не можете быть на 100% уверены в полученных результатах. Наглядный пример: зачастую результаты выборов расходятся с результатами предварительных опросов и даже эксит-пулов.

Доктор Фишер хотел создать определитель (dividing line), который позволял бы понять, удался ли ваш эксперимент или нет. Так и появился индекс достоверности. Достоверность — это тот уровень, который мы принимаем для того, чтобы сказать, что мы считаем «значимым», а что нет. Если «p», индекс достоверности, равен 0,05 или меньше, то результаты достоверны.

Не волнуйтесь, в действительности все не так запутано, как кажется.

Распределение вероятностей Гаусса. По краям — менее вероятные значения переменной, в центре — наиболее вероятные. P-показатель (закрашенная зеленым область) — это вероятность наблюдаемого результата, возникающего случайно.

Нормальное распределение вероятностей (распределение Гаусса) — это представление всех возможных значений некой переменной на графике (на рисунке выше) и их частот. Если вы проведете свое исследование правильно, а затем расположите все полученные ответы на графике, вы получите именно такое распределение. Согласно нормальному распределению, вы получите большой процент похожих ответов, а оставшиеся варианты разместятся по краям графика (так называемые «хвосты»). Такое распределение величин часто встречается в природе, поэтому оно и носит название «нормального».

Используя уравнение на основе вашей выборки и результатов теста, вы можете вычислить то, что называется «тестовой статистикой», которая укажет, насколько отклонились полученные результаты. Она также подскажет, насколько близко вы к тому, чтобы нулевая гипотеза оказалась верной.

Чтобы не забивать свою голову, используйте онлайн-калькуляторы для вычисления статистической значимости:

Один из примеров таких калькуляторов

Буква «p» обозначает вероятность того, что нулевая гипотеза верна. Если число будет небольшим, это укажет на разницу между тестовыми группами, тогда как нулевая гипотеза будет заключаться в том, что они одинаковы. Графически это будет выглядеть так, что ваша тестовая статистика окажется ближе к одному из хвостов вашего колоколообразного распределения.

Доктор Фишер решил установить порог достоверности результатов на уровне p ≤ 0,05. Однако и это утверждение спорное, поскольку приводит к двум затруднениям:

1. Во-первых, тот факт, что вы доказали несостоятельность нулевой гипотезы, не означает, что вы доказали альтернативную гипотезу. Вся эта значимость всего лишь значит, что вы не можете доказать ни A, ни B.

2. Во-вторых, если p-показатель будет равен 0,049, это будет означать, что вероятность нулевой гипотезы составит 4,9%. Это может означать, что в одно и то же время результаты ваших тестов могут быть одновременно и достоверными, и ошибочными.

Вы можете использовать p-показатель, а можете отказаться от него, но тогда вам будет необходимо в каждом отдельном случае высчитывать вероятность осуществления нулевой гипотезы и решать, достаточно ли она большая, чтобы не вносить тех изменений, которые вы планировали и тестировали.

Наиболее распространенный сценарий проведения статистического теста сегодня — это установление порога значимости p ≤ 0,05 до запуска самого теста. Только не забудьте внимательно изучить p-значение при проверке результатов.

Ошибки 1 и 2

Прошло так много времени, что ошибки, которые могут возникнуть при использовании показателя статистической значимости, даже получили собственные имена.

Ошибка 1 (Type 1 Errors)

Как было упомянуто выше, p-значение, равное 0,05, означает: вероятность того, что нулевая гипотеза окажется верной, равняется 5%. Если вы откажетесь от нее, вы совершите ошибку под номером 1. Результаты говорят, что ваш новый веб-сайт повысил показатели конверсии, но существует 5%-ная вероятность, что это не так.

Ошибка 2 (Type 2 Errors)

Эта ошибка является противоположной ошибке 1: вы принимаете нулевую гипотезу, в то время как она является ложной. К примеру, результаты тестов говорят вам, что внесенные изменения в сайт не принесли никаких улучшений, тогда как изменения были. Как итог: вы упускаете возможность повысить свои показатели.

Такая ошибка распространена в тестах с недостаточным размером выборки, поэтому помните: чем больше выборка, тем достовернее результат.

Заключение

Пожалуй, ни один термин среди исследователей не пользуется такой популярностью, как статистическая значимость. Когда результаты тестов не признаются статистически значимыми, последствия бывают самые разные: от роста показателя конверсии до краха компании.

И раз уж маркетологи используют этот термин при оптимизации своих ресурсов, нужно знать, что же он означает на самом деле. Условия проведения тестов могут меняться, но размер выборки и критерий успеха важен всегда. Помните об этом.

Основные черты всякой зависимости между переменными.

Можно отметить два самых простых свойства зависимости между переменными: (a) величина зависимости и (b) надежность зависимости.

- Величина . Величину зависимости легче понять и измерить, чем надежность. Например, если любой мужчина в выборке имел значение числа лейкоцитов (WCC) выше чем любая женщина, то вы можете сказать, что зависимость между двумя переменными (Пол и WCC) очень высокая. Другими словами, вы могли бы предсказать значения одной переменной по значениям другой.

- Надежность ("истинность"). Надежность взаимозависимости - менее наглядное понятие, чем величина зависимости, однако чрезвычайно важное. Надежность зависимости непосредственно связана с репрезентативностью определенной выборки, на основе которой строятся выводы. Другими словами, надежность говорит о том, насколько вероятно, что зависимость будет вновь обнаружена (иными словами, подтвердится) на данных другой выборки, извлеченной из той же самой популяции.

Следует помнить, что конечной целью почти никогда не является изучение данной конкретной выборки значений; выборка представляет интерес лишь постольку, поскольку она дает информацию обо всей популяции. Если исследование удовлетворяет некоторым специальным критериям, то надежность найденных зависимостей между переменными выборки можно количественно оценить и представить с помощью стандартной статистической меры.

Величина зависимости и надежность представляют две различные характеристики зависимостей между переменными. Тем не менее, нельзя сказать, что они совершенно независимы. Чем больше величина зависимости (связи) между переменными в выборке обычного объема, тем более она надежна (см. следующий раздел).

Статистическая значимость результата (p-уровень) представляет собой оцененную меру уверенности в его "истинности" (в смысле "репрезентативности выборки"). Выражаясь более технически, p-уровень – это показатель, находящийся в убывающей зависимости от надежности результата. Более высокий p-уровень соответствует более низкому уровню доверия к найденной в выборке зависимости между переменными. Именно, p-уровень представляет собой вероятность ошибки, связанной с распространением наблюдаемого результата на всю популяцию.

Например, p-уровень = 0.05 (т.е. 1/20) показывает, что имеется 5% вероятность, что найденная в выборке связь между переменными является лишь случайной особенностью данной выборки. Во многих исследованиях p-уровень 0.05 рассматривается как "приемлемая граница" уровня ошибки.

Не существует никакого способа избежать произвола при принятии решения о том, какой уровень значимости следует действительно считать "значимым". Выбор определенного уровня значимости, выше которого результаты отвергаются как ложные, является достаточно произвольным.



На практике окончательное решение обычно зависит от того, был ли результат предсказан априори (т.е. до проведения опыта) или обнаружен апостериорно в результате многих анализов и сравнений, выполненных с множеством данных, а также на традиции, имеющейся в данной области исследований.

Обычно во многих областях результат p .05 является приемлемой границей статистической значимости, однако следует помнить, что этот уровень все еще включает довольно большую вероятность ошибки (5%).

Результаты, значимые на уровне p .01 обычно рассматриваются как статистически значимые, а результаты с уровнем p .005 или p . 001 как высоко значимые. Однако следует понимать, что данная классификация уровней значимости достаточно произвольна и является всего лишь неформальным соглашением, принятым на основе практического опыта в той или иной области исследования .

Понятно, что чем большее число анализов будет проведено с совокупностью собранных данных, тем большее число значимых (на выбранном уровне) результатов будет обнаружено чисто случайно.

Некоторые статистические методы, включающие много сравнений, и, таким образом, имеющие значительный шанс повторить такого рода ошибки, производят специальную корректировку или поправку на общее число сравнений. Тем не менее, многие статистические методы (особенно простые методы разведочного анализа данных) не предлагают какого-либо способа решения данной проблемы.

Если связь между переменными "объективно" слабая, то не существует иного способа проверить такую зависимость кроме как исследовать выборку большого объема. Даже если выборка совершенно репрезентативна, эффект не будет статистически значимым, если выборка мала. Аналогично, если зависимость "объективно" очень сильная, тогда она может быть обнаружена с высокой степенью значимости даже на очень маленькой выборке.

Чем слабее зависимость между переменными, тем большего объема требуется выборка, чтобы значимо ее обнаружить.

Разработано много различных мер взаимосвязи между переменными. Выбор определенной меры в конкретном исследовании зависит от числа переменных, используемых шкал измерения, природы зависимостей и т.д.

Большинство этих мер, тем не менее, подчиняются общему принципу: они пытаются оценить наблюдаемую зависимость, сравнивая ее с "максимальной мыслимой зависимостью" между рассматриваемыми переменными. Говоря технически, обычный способ выполнить такие оценки заключается в том, чтобы посмотреть, как варьируются значения переменных и затем подсчитать, какую часть всей имеющейся вариации можно объяснить наличием "общей" ("совместной") вариации двух (или более) переменных.

Значимость зависит в основном от объема выборки. Как уже объяснялось, в очень больших выборках даже очень слабые зависимости между переменными будут значимыми, в то время как в малых выборках даже очень сильные зависимости не являются надежными.

Таким образом, для того чтобы определить уровень статистической значимости, нужна функция, которая представляла бы зависимость между "величиной" и "значимостью" зависимости между переменными для каждого объема выборки.

Такая функция указала бы точно "насколько вероятно получить зависимость данной величины (или больше) в выборке данного объема, в предположении, что в популяции такой зависимости нет". Другими словами, эта функция давала бы уровень значимости
(p -уровень), и, следовательно, вероятность ошибочно отклонить предположение об отсутствии данной зависимости в популяции.

Эта "альтернативная" гипотеза (состоящая в том, что нет зависимости в популяции) обычно называется нулевой гипотезой .

Было бы идеально, если бы функция, вычисляющая вероятность ошибки, была линейной и имела только различные наклоны для разных объемов выборки. К сожалению, эта функция существенно более сложная и не всегда точно одна и та же. Тем не менее, в большинстве случаев ее форма известна, и ее можно использовать для определения уровней значимости при исследовании выборок заданного размера. Большинство этих функций связано с классом распределений, называемым нормальным .

Уровень значимости в статистике является важным показателем, отражающим степень уверенности в точности, истинности полученных (прогнозируемых) данных. Понятие широко применяется в различных сферах: от проведения социологических исследований, до статистического тестирования научных гипотез.

Определение

Уровень статистической значимости (или статистически значимый результат) показывает, какова вероятность случайного возникновения исследуемых показателей. Общая статистическая значимость явления выражается коэффициентом р-value (p-уровень). В любом эксперименте или наблюдении существует вероятность, что полученные данные возникли из-за ошибок выборки. Особенно это актуально для социологии.

То есть статистически значимой является величина, чья вероятность случайного возникновения крайне мала либо стремится к крайности. Крайностью в этом контексте считают степень отклонения статистики от нуль-гипотезы (гипотезы, которую проверяют на согласованность с полученными выборочными данными). В научной практике уровень значимости выбирается перед сбором данных и, как правило, его коэффициент составляет 0,05 (5 %). Для систем, где крайне важны точные значения, этот показатель может составлять 0,01 (1 %) и менее.

История вопроса

Понятие уровня значимости было введено британским статистиком и генетиком Рональдом Фишером в 1925 году, когда он разрабатывал методику проверки статистических гипотез. При анализе какого-либо процесса существует определенная вероятность тех либо иных явлений. Трудности возникают при работе с небольшими (либо не очевидными) процентами вероятностей, подпадающими под понятие «погрешность измерений».

При работе со статистическими данными, недостаточно конкретными, чтобы их проверить, ученые сталкивались с проблемой нулевой гипотезы, которая «мешает» оперировать малыми величинами. Фишер предложил для таких систем определить вероятность событий в 5 % (0,05) в качестве удобного выборочного среза, позволяющего отклонить нуль-гипотезу при расчетах.

Введение фиксированного коэффициента

В 1933 году ученые Ежи Нейман и Эгон Пирсон в своих работах рекомендовали заранее (до сбора данных) устанавливать определенный уровень значимости. Примеры использования этих правил хорошо видны во время проведения выборов. Предположим, есть два кандидата, один из которых очень популярен, а второй – малоизвестен. Очевидно, что первый кандидат выборы выиграет, а шансы второго стремятся к нулю. Стремятся – но не равны: всегда есть вероятность форс-мажорных обстоятельств, сенсационной информации, неожиданных решений, которые могут изменить прогнозируемые результаты выборов.

Нейман и Пирсон согласились, что предложенный Фишером уровень значимости 0,05 (обозначаемый символом α) наиболее удобен. Однако сам Фишер в 1956 году выступил против фиксации этого значения. Он считал, что уровень α должен устанавливаться в соответствии с конкретными обстоятельствами. Например, в физике частиц он составляет 0,01.

Значение p-уровня

Термин р-value впервые использован в работах Браунли в 1960 году. P-уровень (p-значение) является показателем, находящимся в обратной зависимости от истинности результатов. Наивысший коэффициент р-value соответствует наименьшему уровню доверия к произведенной выборке зависимости между переменными.

Данное значение отражает вероятность ошибок, связанных с интерпретацией результатов. Предположим, p-уровень = 0,05 (1/20). Он показывает пятипроцентную вероятность того, что найденная в выборке связь между переменными – всего лишь случайная особенность проведенной выборки. То есть, если эта зависимость отсутствует, то при многократных подобных экспериментах в среднем в каждом двадцатом исследовании можно ожидать такую ​​же либо большую зависимость между переменными. Часто p-уровень рассматривается в качестве «допустимой границы» уровня ошибок.

Кстати, р-value может не отражать реальную зависимость между переменными, а лишь показывает некое среднее значение в пределах допущений. В частности, окончательный анализ данных будет также зависеть от выбранных значений данного коэффициента. При p-уровне = 0,05 будут одни результаты, а при коэффициенте, равном 0,01, другие.

Проверка статистических гипотез

Уровень статистической значимости особенно важен при проверке выдвигаемых гипотез. Например, при расчетах двустороннего теста область отторжения разделяют поровну на обоих концах выборочного распределения (относительно нулевой координаты) и высчитывают истинность полученных данных.

Предположим, при мониторинге некоего процесса (явления) выяснилось, что новая статистическая информация свидетельствует о небольших изменениях относительно предыдущих значений. При этом расхождения в результатах малы, не очевидны, но важны для исследования. Перед специалистом встает дилемма: изменения реально происходят или это ошибки выборки (неточность измерений)?

В этом случае применяют либо отвергают нулевую гипотезу (списывают все на погрешность, или признают изменение системы как свершившийся факт). Процесс решения задачи базируется на соотношении общей статистической значимости (р-value) и уровня значимости (α). Если р-уровень < α, значит, нулевую гипотезу отвергают. Чем меньше р-value, тем более значимой является тестовая статистика.

Используемые значения

Уровень значимости зависит от анализируемого материала. На практике используют следующие фиксированные значения:

  • α = 0,1 (или 10 %);
  • α = 0,05 (или 5 %);
  • α = 0,01 (или 1 %);
  • α = 0,001 (или 0,1 %).

Чем более точными требуются расчеты, тем меньший коэффициент α используется. Естественно, что статистические прогнозы в физике, химии, фармацевтике, генетике требуют большей точности, чем в политологии, социологии.

Пороги значимости в конкретных областях

В высокоточных областях, таких как физика частиц и производственная деятельность, статистическая значимость часто выражается как соотношение среднеквадратического отклонения (обозначается коэффициентом сигма – σ) относительно нормального распределения вероятностей (распределение Гаусса). σ – это статистический показатель, определяющий рассеивание значений некой величины относительно математических ожиданий. Используется для составления графиков вероятности событий.

В зависимости от области знаний, коэффициент σ сильно разнится. Например, при прогнозировании существования бозона Хиггса параметр σ равен пяти (σ=5), что соответствует значению р-value=1/3,5 млн. При исследованиях геномов уровень значимости может составлять 5×10 -8 , что не являются редкостью для этой области.

Эффективность

Необходимо учитывать, что коэффициенты α и р-value не являются точными характеристиками. Каким бы ни был уровень значимости в статистике исследуемого явления, он не является безусловным основанием для принятия гипотезы. Например, чем меньше значение α, тем больше шанс, что устанавливаемая гипотеза значима. Однако существует риск ошибиться, что уменьшает статистическую мощность (значимость) исследования.

Исследователи, которые зацикливаются исключительно на статистически значимых результатах, могут получить ошибочные выводы. При этом перепроверить их работу затруднительно, так как ими применяются допущения (коими фактически и являются значения α и р-value). Поэтому рекомендуется всегда, наряду с вычислением статистической значимости, определять другой показатель – величину статистического эффекта. Величина эффекта – это количественная мера силы эффекта.

Статистическая достоверность имеет существенное значение в расчетной практике ФКС. Ранее было отмечено, что из одной и той же генеральной совокупности может быть избрано множество выборок:

Если они подобраны корректно, то их средние показатели и показатели генеральной совокупности незначительно отличаются друг от друга величиной ошибки репрезентативности с учетом принятой надежности;

Если они избираются из разных генеральных совокупностей, различие между ними оказывается существенным. В статистике по­всеместно рассматривается сравнение выборок;

Если они отличаются несущественно, непринципиально, не­значительно, т. е. фактически принадлежат одной и той же гене­ральной совокупности, различие между ними называется стати­стически недостоверным.

Статистически достоверным различием выборок называется выборка, которая различается значимо и принципиально, т. е. при­надлежит разным генеральным совокупностям.

В ФКС оценка статистической достоверности различий выбо­рок означает решение множества практических задач. Например, введение новых методик обучения, программ, комплексов упраж­нений, тестов, контрольных упражнений связано с их экспери­ментальной проверкой, которая должна показать, что испытуе­мая группа принципиально отлична от контрольной. Поэтому при­меняют специальные статистические методы, называемые крите­риями статистической достоверности, позволяющие обнаружить наличие или отсутствие статистически достоверного различия между выборками.

Все критерии делятся на две группы: параметрические и непараметрические. Параметрические критерии предусматривают обязательное наличие нормального закона распределения, т.е. имеется в виду обязательное определение основных показателей нормального закона - средней арифметической величины и среднего квадратического отклонения s. Параметрические крите­рии являются наиболее точными и корректными. Непараметри­ческие критерии основаны на ранговых (порядковых) отличиях между элементами выборок.

Приведем основные критерии статистической достоверности, используемые в практике ФКС: критерий Стьюдента и критерий Фишера.

Критерий Стьюдента назван в честь английского ученого К. Госсета (Стьюдент - псевдоним), открывшего данный метод. Критерий Стьюдента является параметрическим, используется для сравнения абсолютных показателей выборок. Выборки могут быть различными по объему.

Критерий Стьюдента определяется так.

1. Находим критерий Стьюдента t по следующей формуле:


где - средние арифметические сравниваемых выборок; т 1 , т 2 - ошибки репрезентативности, выявленные на основании показателей сравниваемых выборок.

2. Практика в ФКС показала, что для спортивной работы доста­точно принять надежность счета Р = 0,95.

Для надежности счета: Р = 0,95 (a = 0,05), при числе степеней свободы

k = n 1 + п 2 - 2 по таблице приложения 4 находим величи­ну граничного значения критерия (t гр ).

3. На основании свойств нормального закона распределения в критерии Стьюдента осуществляется сравнение t и t гр.

Делаем выводы:

если t t гр, то различие между сравниваемыми выборками статистически достоверно;

если t t гр, то различие статистически недостоверно.

Для исследователей в области ФКС оценка статистической до­стоверности является первым шагом в решении конкретной зада­чи: принципиально или непринципиально различаются между собой сравниваемые выборки. Последующий шаг заключается в оценке этого различия с педагогической точки зрения, что опре­деляется условием задачи.

Рассмотрим применение критерия Стьюдента на конкретном примере.

Пример 2.14. Группа испытуемых в количестве 18 человек оценена на ЧСС (уд./мин) до х i и после y i разминки.

Оценить эффективность разминки по показателю ЧСС. Исход­ные данные и расчеты представлены в табл. 2.30 и 2.31.

Таблица 2.30

Обработка показателей ЧСС до разминки


Ошибки по обеим группам совпали, так как объемы выборок равны (исследуется одна и та же группа при различных условиях), а средние квадратические отклонения составили s х = s у = 3 уд./мин. Переходим к определению критерия Стьюдента:

Задаем надежность счета: Р= 0,95.

Число степеней свободы k 1 = n 1 + п 2 - 2=18+18-2 = 34. По таблице приложения 4 находим t гр = 2,02.

Статистический вывод. Поскольку t = 11,62, а граничное t гр = 2,02, то 11,62 > 2,02, т.е. t > t гр, поэтому различие между выбор­ками статистически достоверно.

Педагогический вывод. Установлено, что по показателю ЧСС раз­личие между состоянием группы до и после разминки является статистически достоверным, т.е. значимым, принципиальным. Итак, по показателю ЧСС можно сделать вывод, что разминка эффективна.

Критерий Фишера является параметрическим. Он применяет­ся при сравнении показателей рассеивания выборок. Это, как пра­вило, означает сравнение по показателям стабильности спортив­ной работы или стабильности функциональных и технических показателей в практике физической культуры и спорта. Выборки могут быть разновеликими.

Критерий Фишера определяется в нижеприведенной последова­тельности.

1. Находим Критерий Фишера F по формуле


где , - дисперсии сравниваемых выборок.

Условиями критерия Фишера предусмотрено, что в числителе формулы F находится большая дисперсия, т.е. число F всегда больше единицы.

Задаем надежность счета: Р = 0,95 - и определяем числа степеней свободы для обеих выборок: k 1 = n 1 - 1 , k 2 = п 2 - 1.

По таблице приложения 4 находим граничное значение кри­терия F гр .

Сравнение критериев F и F гр позволяет сформулировать вы­воды:

если F > F гр, то различие между выборками статистически достоверно;

если F< F гр, то различие между выборками статически недо­стоверно.

Приведем конкретный пример.

Пример 2.15. Проанализируем две группы гандболистов: х i (n 1 = 16 человек) и y i (п 2 = 18 человек). Эти группы спортсменов исследованы на время отталкивания (с) при броске мяча в во­рота.

Однотипны ли показатели отталкивания?

Исходные данные и основные расчеты представлены в табл. 2.32 и 2.33.

Таблица 2.32

Обработка показателей отталкивания первой группы гандболистов


Определим критерий Фишера:





По данным, представленным в таблице приложения 6, находим Fгр: Fгр = 2,4

Обратим внимание на то, что в таблице приложения 6 пере­числение чисел степеней свободы как большей, так и меньшей дисперсии при приближении к большим числам становится гру­бее. Так, числа степеней свободы большей дисперсии следует в таком порядке: 8, 9, 10, 11, 12, 14, 16, 20, 24 и т.д., а меньшей - 28, 29, 30, 40, 50 и т.д.

Это объясняется тем, что при увеличении объема выборок раз­личия F-критерия уменьшаются и можно использовать табличные значения, приближенные к исходным данным. Так, в примере 2.15 =17 отсутствует и можно принять ближайшее к нему значение k = 16, откуда и получаем Fгр = 2,4.

Статистический вывод. Поскольку критерий Фишера F= 2,5 > F= 2,4, выборки различимы статистически достоверно.

Педагогический вывод. Значения времени отталкивания (с) при броске мяча в ворота у гандболистов обеих групп суще­ственно различаются. Эти группы следует рассматривать как раз­личные.

Дальнейшие исследования должны показать, в чем причина такого различия.

Пример 2.20 .(на статистическую достоверность выборки ). Повысилась ли квалификация футболиста, если время (с) от подачи сигнала до удара по мячу ногой в начале тренировки было x i , а в конце у i .

Исходные данные и основные расчеты приведены в табл. 2.40 и 2.41.

Таблица 2.40

Обработка показателей времени от подачи сигнала до удара по мячу в начале тренировки


Определим различие групп показателей по критерию Стью­дента:

При надежности Р = 0,95 и степенях свободы k = n 1 + п 2 - 2 = 22 + 22 - 2 = 42 по таблице приложения 4 находим t гр = 2,02. Поскольку t = 8,3 > t гр = 2,02 - различие статистически досто­верно.

Определим различие групп показателей по критерию Фишера:


По таблице приложения 2 при надежности Р = 0,95 и степенях свободы k = 22-1=21 значение F гр = 21. Поскольку F= 1,53 < F гр = = 2,1, различие в рассеивании исходных данных статистически недостоверно.

Статистический вывод. По среднему арифметическому пока­зателю различие групп показателей статистически достоверно. По показателю рассеивания (дисперсии) различие групп показате­лей статистически недостоверно.

Педагогический вывод. Квалификация футболиста существенно повысилась, однако следует уделить внимание стабильности его показаний.

Подготовка к работе

Перед проведением данной лабораторной работы по дисциплине «Спортивная метрология» всем студентам учебной группы необходимо сформировать рабочие бригады по 3-4 студента в каждой , для совместного выполнения рабочего задания всех лабораторных работ.

При подготовке к работе ознакомиться с соответствующими разде­лами рекомендуемой литературы (см.раздел 6 данных методических указаний) и конспектов лекций. Изучить разделы 1 и 2 на данную лабораторную работу, а также рабочее задание на неё (раздел 4).

Заготовить форму отчета на стандартных листах писчей бумаги формата А4 и занести в нее материалы необходимые для работы.

Отчет должен содержать :

Титульный лист с указанием кафедры (УК и ТР), учебной группы, фамилии, имени, отчества студента, номера и названия лабораторной работы, даты ее выполнения, а также фамилии, учёной степени, учёного звания и должности преподавателя, прини­мающего работу;

Цель работы;

Формулы с числовыми значениями, поясняющие промежуточные и окончательные результаты вычислений;

Таблицы измеренных и вычисленных величин;

Требуемый по заданию графический материал;

Краткие выводы по результатам каждого из этапов рабочего задания и в целом по выполненной работе.

Все графики и таблицы вычерчиваются аккуратно при помощи чертежных инструментов. Условные графические и буквенные обозначения должны соответствовать ГОСТам. Допускается оформление отчёта с применением вычислительной (компьютерной) техники.

Рабочее задание

Перед проведением всех измерений каждому члену бригады необходимо изучить правила использования спортивной игры Дартс, приведенные в приложении 7, которые необходимы для проведения нижеприведенных этапов исследований.

I – й этап исследований «Исследование результатов попаданий в мишень спортивной игры Дартс каждым членом бригады на соответствие нормальному закону распределения по критерию χ 2 Пирсона и критерию трёх сигм»

1. провести измерение (испытание) своей (личной) быстроты и координированности действий, путём бросания 30-40 раз дротиков в круговую мишень спортивной игры Дартс.

2. Результаты измерений (испытаний) x i (в очках) оформить в виде вариационного ряда и занести в таблицу 4.1 (столбцы , выполнить все необходимые расчёты, заполнить необходимые таблицы и сделать соответствующие выводы на соответствие полученного эмпирического распределения нормальному закону распределения, по аналогии с аналогичными расчётами, таблицами и выводами примера 2.12, приведенного в разделе 2 данных методических указаний на страницах 7 -10.

Таблица 4.1

Соответствие быстроты и координированности действий испытуемых нормальному закону распределения

№ п/п округ- ленно
Всего

II – й этап исследований

«Оценка средних показателей генеральной совокупности попаданий в мишень спортивной игры Дартс всех студентов учебной группы по результатам измерений членов одной бригады»

Оценить средние показатели быстроты и координированности действий всех студентов учебной группы (согласно списка учебной группы классного журнала) по результатам попаданий в мишень спортивной игры Дартс всех членов бригады, полученным на первом этапе исследований данной лабораторной работы.

1. Оформить результаты измерений быстроты и координированности действий при бросании дротиков в круговую мишень спортивной игры Дартс всех членов Вашей бригады (2 – 4 человека), которые представляют собой выборку результатов измерений из генеральной совокупности (результаты измерений всех студентов учебной группы – например, 15 человек), занеся их во второй и третий столбцы таблицы 4.2.

Таблица 4.2

Обработка показателей быстроты и координированности действий

членов бригады

№ п/п
Всего

В таблице 4.2 под следует понимать , совпавшее среднее количество баллов (см. результаты расчётов по таблице 4.1) членами Вашей бригады ( , полученное на первом этапе исследований. Следует заметить, что, как правило, в таблице 4.2 есть рассчитанное среднее значение результатов измерений полученное одним членом бригады на первом этапе исследований , так как вероятность, того что результаты измерений различными членами бригады совпадут очень мала. Тогда, как правило, значения в столбце таблицы 4.2 для каждой из строк - равны 1, а в строке «Всего » графы « », записывается число членов Вашей бригады.

2. Выполнить все необходимые расчёты по заполнению таблицы 4.2, а также другие расчёты и выводы, аналогичные расчётам и выводам примера 2.13, приведенным в 2-ом разделе данной методической разработки на страницах 13-14. Следует иметь ввиду, при расчёте ошибки репрезентативности «m» необходимо использовать формулу 2.4, приведенную на странице 13 данной методической разработки, так как выборка мала (n , а число элементов генеральной совокупности N известно, и равно числу студентов учебной группы, согласно списка журнала учебной группы.

III – й этап исследований

Оценка эффективности разминки по показателю «Быстрота и координированность действий» каждым членом бригады с помощью критерия Стьюдента

Оценить эффективность разминки по бросанию дротиков в мишень спортивной игры «Дартс», выполненную на первом этапе исследований данной лабораторной работы, каждым членом бригады по показателю «Быстрота и координированность действий», с помощью критерия Стьюдента - параметрического критерия статистической достоверности эмпирического закона распределения нормальному закону распределения.

… Всего

2. дисперсии и СКО , результатов измерений показателя «Быстрота и координированность действий» по результатам разминки, приведенных в таблице 4.3, (см. аналогичные расчёты приведенные сразу после таблицы 2.30 примера 2.14 на странице 16 данной методической разработки).

3. Каждому члену рабочей бригады провести измерение (испытание) своей (личной) быстроты и координированности действий после разминки,

… Всего

5. Произвести вычисления среднего значения дисперсии и СКО , результатов измерений показателя «Быстрота и координированность действий» после разминки, приведенных в таблице 4.4, записать в целом результат измерений по результатам разминки (см. аналогичные расчеты, приведенные сразу после таблицы 2.31 примера 2.14 на странице 17 данной методической разработки).

6. Выполнить все необходимые расчёты и выводы, аналогичные расчётам и выводам примера 2.14, приведенным в 2-ом разделе данной методической разработки на страницах 16-17. Следует иметь ввиду, при расчёте ошибки репрезентативности «m» необходимо использовать формулу 2.1, приведенную на странице 12 данной методической разработки, так как выборка n , а число элементов генеральной совокупности N ( неизвестно.

IV – й этап исследований

Оценка однотипности (стабильности) показателей «Быстрота и координированность действий» двух членов бригады с помощью критерия Фишера

Оценить однотипность (стабильность) показателей «Быстрота и координированность действий» двух членов бригады с помощью критерия Фишера, по результатам измерений, полученным на третьем этапе исследований данной лабораторной работы.

Для этого необходимо выполнить следующее.

Используя данные таблиц 4.3 и 4.4, результаты расчётов дисперсий по этим таблицам , полученные на третьем этапе исследований, а также методику расчёта и применения критерия Фишера для оценки однотипности (стабильности) спортивных показателей, приведенную в примере 2.15 на страницах 18-19 данной методической разработки, сделать соответствующие статистический и педагогический выводы.

V – й этап исследований

Оценка групп показателей «Быстрота и координированность действий» одного члена бригады до и после разминки

При обосновании статистического вывода следует решить вопрос, где же проходит линия между принятием и отвержением нулевой гипотезы? В силу наличия в эксперименте случайных влияний эта граница не может быть проведена абсолютно точно. Она базируется на понятии уровня значимости. Уровнем значимости называется вероятность ошибочного отклонения нулевой гипотезы. Или, иными словами, уровень значимости - это вероятность ошибки первого рода при принятии решения. Для обозначения этой вероятности, как правило, употребляют либо греческую букву α, либо латинскую букву р. В дальнейшем мы будем употреблять букву р.

Исторически сложилось так, что в прикладных науках, использующих статистику, и в частности в психологии, считается, что низшим уровнем статистической значимости является уровень р = 0,05; достаточным - уровень р = 0,01 и высшим уровень р = 0,001. Поэтому в статистических таблицах, которые приводятся в приложении к учебникам по статистике, обычно даются таблич­ные значения для уровней р = 0,05, р = 0,01 и р = 0,001. Иногда даются табличные значения для уровней р - 0,025 и р = 0,005.

Величины 0,05, 0,01 и 0,001 - это так называемые стандартные уровни статистической значимости. При статистическом анализе экспериментальных данных психолог в зависимости от задач и гипотез исследования должен выбрать необходимый уровень значимости. Как видим, здесь наибольшая величина, или нижняя граница уровня статистической значимости, равняется 0,05 - это означает, что допускается пять ошибок в выборке из ста элементов (случаев, испытуемых) или одна ошибка из двад­цати элементов (случаев, испытуемых). Считается, что ни шесть, ни семь, ни большее количество раз из ста мы ошибиться не можем. Цена таких ошибок будет слишком велика.

Заметим, что в современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответ­ствующим статистическим методом. Эти уровни, обозначаемые буквой р, могут иметь различное числовое выражение в интервале от 0 до 1, например, р = 0,7, р = 0,23 или р = 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В то же время в последнем случае результаты значимы на уровне 12 тысячных. Это достоверный уровень.

Правило принятия статистического вывода таково: на основании полученных экспериментальных данных психолог подсчи­тывает по выбранному им статистическому методу так называе­мую эмпирическую статистику, или эмпирическое значение. Эту величину удобно обозначить как Ч эмп . Затем эмпирическая стати­стика Ч эмп сравнивается с двумя критическими величинами, ко­торые соответствуют уровням значимости в 5% и в 1% для выб­ранного статистического метода и которые обозначаются как Ч кр . Величины Ч кр находятся для данного статистического метода по соответствующим таблицам, приведенным в приложении к любому учебнику по статистике. Эти величины, как правило, всегда различны и их в дальнейшем для удобства можно назвать как Ч кр1 и Ч кр2 . Найденные по таблицам величины критических значений Ч кр1 и Ч кр2 удобно представлять в следующей стандартной форме записи:

Подчеркнем, однако, что мы использовали обозначения Ч эмп и Ч кр как сокращение слова «число». Во всех статистических методах приняты свои символические обозначения всех этих вели­чин: как подсчитанной по соответствующему статистическому методу эмпирической величины, так и найденных по соответ­ствующим таблицам критических величин. Например, при подсчете рангового коэффициента корреляции Спирмена по таблице критических значений этого коэффициента были найдены сле­дующие величины критических значений, которые для этого метода обозначаются греческой буквой ρ («ро»). Так для р = 0,05 по таб­лице найдена величина ρ кр 1 = 0,61 и для р = 0,01 величина ρ кр 2 = 0,76.

В принятой в дальнейшем изложении стандартной форме записи это выглядит следующим образом:

Теперь нам необходимо сравнить наше эмпирическое значе­ние с двумя найденными по таблицам критическими значения­ми. Лучше всего это сделать, расположив все три числа на так называемой «оси значимости». «Ось значимости» представляет собой прямую, на левом конце которой располагается 0, хотя он, как правило, не отмечается на самой этой прямой, и слева направо идет увеличение числового ряда. По сути дела это при­вычная школьная ось абсцисс ОХ декартовой системы координат. Однако особенность этой оси в том, что на ней выделено три участка, «зоны». Одна крайняя зона называется зоной незначимости, вторая крайняя зона - зоной значимости, а промежуточная - зоной неопреде­ленности. Границами всех трех зон являются Ч кр1 для р = 0,05 и Ч кр2 для р = 0,01, как это показано на рисунке.

В зависимости от правила принятия решения (правила вывода), предписанного в данном статистическом методе возможно два варианта.

Первый вариант: альтернативная гипотеза принимается, если Ч эмп Ч кр .

Или второй вариант: альтернативная гипотеза принимается, если Ч эмп Ч кр .

Подсчитанное Ч эмп по какому либо статистическому методу должно обязательно попасть в одну из трех зон.

Если эмпирическое значение попадает в зону незначимости, то принимается гипотеза Н 0 об отсутствии различий.

Если Ч эмп попало в зону значимости, принимается альтернативная гипотеза Н 1 о на­личии различий, а гипотеза Н 0 отклоняется.

Если Ч эмп попадает в зону неопределенности, перед исследователем стоит дилемма. Так, в зависи­мости от важности решаемой задачи он может считать полученную статистическую оценку достоверной на уровне 5%, и принять, тем самым гипотезу Н 1 , отклонив гипотезу Н 0 , либо - недостоверной на уровне 1%, приняв тем самым, гипотезу Н 0 . Подчеркнем, одна­ко, что это именно тот случай, когда психолог может допустить ошибки первого или второго рода. Как уже говорилось выше, в этих обстоятельствах лучше всего увеличить объем выборки.

Подчеркнем также, что величина Ч эмп может точно совпасть либо с Ч кр1 либо Ч кр2 . В первом случае можно считать, что оценка достоверна точно на уровне в 5% и принять гипотезу Н 1 , или, напротив, принять гипотезу Н 0 . Во втором случае, как пра­вило, принимается альтернативная гипотеза Н 1 о наличии разли­чий, а гипотеза Н 0 отклоняется.