История физики: хронология, ученые-физики и их открытия

Введение

Общая характеристика научных открытий ХХ века

Самые громкие научные открытия ХХ века по физике

Значение физики в современном мире

Заключение

Список использованной литературы

Персоналии

Введение

Актуальность темы исследования обусловлена тем, что в начале ХХ столетия люди еще не были готовы принять некоторые изобретения, которые уже могли войти в мир науки, но, к сожалению, им судилось выйти в мир только спустя несколько десятилетий. В ХХ столетии было делано много научных открытий, даже, пожалуй, больше чем за се предыдущее время. Знания человечества с каждым годом неуклонно растет, причем ели тенденция развития сохранится то даже невозможно представить, то нас еще ожидает.

В ХХ столетии основные открытия были осуществлены в основном двух сферах: биологии и физике.

Цель исследуемой работы заключается в исследовании основных научных открытий по физике в ХХ веке.

Для детального изучения данной цели мы выделяем следующие задачи для раскрытия темы:

-дать общую характеристику научных открытий ХХ века;

рассмотреть самые громкие научные открытия ХХ века по физике;

выявить значение физики в современном мире;

сделать выводы.

Структура работы. Работа состоит из введения, трех глав, заключения, списка использованной литературы, перечней терминов и персоналий.

1. Общая характеристика научных открытий ХХ века

Одним из самых главных открытий в этой области стало открытие известного физика Макса Планка. Он открыл неравномерно излучение энергии. На основе этого открытия Эйнштейн в 1905 году начал развивать важнейшую теорию фотоэффекта. Далее была предложена модель строения атома, по которой предполагалось, что атом построен подобно солнечной системе, где вокруг большого и тяжелого объекта (ядра) крутятся маленькие объекты (атомы). Но на это революционные открытия не закончились, Альберт Эйнштейн в 1916 открыл теорию относительности, которое практически открыло глаза у всех ученых того времени. В результате, которого было практически доказано, что, гравитация - это не воздействие полей и тел, а искривления временного пространства. Она объясняет существование черных дыр, а также их происхождение. 1932 год, Джеймсом Чэдвиком было доказано, существование нейтронов. И хотя это открытие привело к взрыву бомб в Японии Нагасаки и Хиросиме, оно также помогло развивать мирный атом, который сейчас активно используется в АЭС. К примеру, в Германии более 70% электроэнергии вырабатывается атомными станциями, в мире этот показатель равен примерно 20%. 1947 год, 16 декабря ученые Браттейн, Бардин, Шокли открыли материал - полупроводник, а также его свойства, которые, сейчас применяются во всех электронных устройствах. Таким образом, был открыт транзистор, его изобретение помогло развивать микросхемы, позволяющие, по сути, программировать электронные системы.

Вместе с тем, ДНК - и хотя оно было открыто еще в 1869 году, биологом Мишером, он и не предполагал, что в нем хранятся все данные о существе. Кроме этого ДНК имеется во всех живых существах (начиная от растений и заканчивая любым животным). А уже Розалин Франклин открыл строение молекулы ДНК, которая выглядела как спиральная лестница. Также были открыты гены, которые обозначали будущий вид, и особенности каждого человека и существа в целом.

Не смотря на улучшение нашей жизни с каждым годом он становится опаснее, из-за того что человечество перестало думать о безопасности, а надеется лишь на материальные блага происходят различные катаклизмы, вот даже атомные: Чернобыль, Фукусима. Эти события заставили Японию принять решение отказаться от атомной энергии в течение 7-8 лет.

2. Самые громкие научные открытия ХХ века по физике

Теория относительности. В 1905 году случился переворот в мире науки, произошло величайшее открытие. Молодой неизвестный ученый, работающий в бюро патентов в швейцарском городе Берн, сформулировал революционную теорию. Его звали Альберт Эйнштейн.

Эйнштейн однажды сказал, что все теории нужно объяснять детям. Если они не поймут объяснения, то значит теория бессмысленна. Будучи ребенком, Эйнштейн однажды прочитал детскую книжку об электричестве, тогда оно только появлялось, и простой телеграф казался чудом. Эта книжка была написана неким Бернштейном, в ней он предлагал читателю представить себя едущим внутри провода вместе с сигналом. Можно сказать, что тогда в голове Эйнштейна и зародилась его революционная теория.

В юношестве, вдохновленный своим впечатлением от той книги, Эйнштейн представлял себе, как он двигается вместе с лучом света. Он обдумывал эту мысль 10 лет, включая в размышления понятие света, времени и пространства.

Он осознал, что теория Ньютона, согласно которой время и пространство неизменны, была неправильной, если ее применить к скорости света. С этого и началась формулировка того, что он назвал теорией относительности.

В мире, который описывал Ньютон, время и пространство были отделены друг от друга: когда на Земле 10 часов утра, то такое же время было и на Венере, и на Юпитере, и по всей Вселенной. Время было тем, что никогда не отклонялось и не останавливалось. Но Эйнштейн по-другому воспринимал время.

Время - это река, которая извивается вокруг звезд, замедляясь и ускоряясь. А если пространство и время могут изменяться, то меняются и наши представления об атомах, телах и вообще о Вселенной!

Эйнштейн демонстрировал свою теорию с помощью так называемых мыслительных экспериментов. Самый известный из них - это «парадокс близнецов». Итак, у нас есть двое близнецов, один из которых улетает в космос на ракете. Так как она летит почти со скоростью света, время внутри нее замедляется. После возвращения этого близнеца на Землю оказывается, что он моложе того, кто остался на планете. Итак, время в разных частях Вселенной идет по-разному. Это зависит от скорости: чем быстрее вы движетесь, тем медленнее для вас идет время.

Этот эксперимент в какой-то степени проводится с космонавтами на орбите. Если человек находится в открытом космосе, то время для него идет медленней. На космической станции время идет медленней. Этот феномен затрагивает и спутники. Возьмем, например, спутники GPS: они показывают ваше положение на планете с точностью до нескольких метров. Спутники движутся вокруг Земли со скоростью 29000 км/ч, поэтому к ним применимы постулаты теории относительности. Это нужно учитывать, ведь если в космосе часы идут медленнее, то синхронизация с земным временем собьется и система GPS не будет работать.

Через несколько месяцев после опубликования теории относительности Эйнштейн сделал следующее великое открытие: самое известное уравнение всех времен.=mc2 Вероятно, это самая известная в мире формула. В теории относительности Эйнштейн доказал, что при достижении скорости света условия для тела меняются невообразимым образом: время замедляется, пространство сокращается, а масса растет. Чем выше скорость, тем больше масса тела. Только подумайте, энергия движения делает вас тяжелее. Масса зависит от скорости и энергии. Эйнштейн представил себе, как фонарик испускает луч света. Точно известно, сколько энергии выходит из фонарика. При этом он показал, что фонарик стал легче, т.е. он стал легче, когда начал испускать свет. Значит E - энергия фонарика зависит от m - массы в пропорции, равной c2. Все просто.

Эта формула показывала и на то, что в маленьком предмете может быть заключена огромная энергия. Представьте себе, что вам бросают бейсбольный мяч и вы его ловите. Чем сильнее его бросят, тем большей энергией он будет обладать.

Теперь что касается состояния покоя. Когда Эйнштейн выводил свои формулы, он обнаружил, что даже в состоянии покоя тело обладает энергией. Посчитав это значение по формуле, вы увидите, что энергия поистине огромна.

Открытие Эйнштейна было огромным научным скачком. Это был первый взор на мощь атома. Не успели ученые полностью осознать это открытие, как случилось следующее, которое вновь повергло всех в шок.

Квантовая теория. Квантовый скачок - самый малый возможный скачок в природе, при этом его открытие стало величайшим прорывом научной мысли.

Субатомные частицы, например, электроны, могут передвигаться из одной точку в другую, не занимая пространство между ними. В нашем макромире это невозможно, но на уровне атома - это закон.

В субатомном мире атомы и их составляющие существуют согласно совсем иным законам, нежели крупные материальные тела. Немецкий ученый Макс Планк описал эти законы в своей квантовой теории.

Квантовая теория появилась в самом начале ХХ века, когда случился кризис в классической физике. Было открыто множество феноменов, которые противоречили законам Ньютона. Мадам Кюри, например, открыла радий, который сам по себе светится в темноте, энергия бралась из ниоткуда, что противоречило закону сохранения энергии. В 1900 году люди считали, что энергия непрерывна, и что электричество и магнетизм можно было бесконечно делить на абсолютно любые части. А великий физик Макс Планк дерзко заявил, что энергия существует в определенных объемах - квантах.

Если представить себе, что свет существует только в этих объемах, то становятся понятны многие феномены даже на уровне атома. Энергия выделяется последовательно и в определенном количестве, это называется квантовым эффектом и означает, что энергия волнообразна.

Тогда думали, что Вселенная была создана совсем по-другому. Атом представлялся чем-то, напоминающим шар для боулинга. А как может шар иметь волновые свойства?

В 1925 году австрийский физик Эрвин Шредингер, наконец, составил волновое уравнение, которое описывало движение электронов. Внезапно стало возможным заглянуть внутрь атома. Получается, что атомы одновременно являются и волнами, и частицами, но при этом непостоянными.

Вскоре Макс Борн, коллега Эйнштейна, сделал революционный шаг: он задался вопросом - если вещество является волной, то что в ней меняется? Борн предположил, что меняется вероятность определения положения тела в данной точке.

Можно ли вычислить возможность того, что человек разделится на атомы, а потом материализуется по другую сторону стены? Звучит абсурдно. Как можно, проснувшись утром, оказаться на Марсе? Как можно пойти спать, а проснуться на Юпитере? Это невозможно, но вероятность этого подсчитать вполне реально. Данная вероятность очень низка. Чтобы это случилось, человеку нужно было бы пережить Вселенную, а вот у электронов это случается постоянно.

Все современные «чудеса» вроде лазерных лучей и микрочипов работают на основании того, что электрон может находиться сразу в двух местах. Как это возможно? Не знаешь, где точно находится объект. Это стало таким трудным препятствием, что даже Эйнштейн бросил заниматься квантовой теорией, он сказал, что не верит, что Господь играет во Вселенной в кости.

Несмотря на всю странность и неопределенность, квантовая теория остается пока что лучшим нашим представлением о субатомном мире.

Нейтрон. Атом так мал, что его трудно себе представить. В одну песчинку помещается 72 квинтиллиона атомов. Открытие атома привело к другому открытию.

О существовании атома люди знали уже 100 лет назад. Они думали, что электроны и протоны равномерно распределены в нем. Это назвали моделью типа «пудинг с изюмом», потому что считалось, что электроны были распределены внутри атома как изюм внутри пудинга.

В начале ХХ века Эрнест Резерфорд провел эксперимент с целью еще лучше исследовать структуру атома. Он направлял на золотую фольгу радиоактивные альфа-частицы. Он хотел узнать, что произойдет, когда альфа-частицы ударятся о золото. Ничего особенного ученый не ожидал, так как думал, что большинство альфа-частиц пройдут сквозь золото, не отражаясь и не изменяя направление.

Однако, результат был неожиданным. По его словам, это было то же самое, что выстрелить 380-мм снарядом по куску материи, и при этом снаряд отскочил бы от нее. Некоторые альфа-частицы сразу отскочили от золотой фольги. Это могло произойти, только если бы внутри атома было небольшое количество плотного вещества, оно не распределено как изюм в пудинге. Резерфорд назвал это небольшое количество вещества ядром.

Благодаря открытию Резерфорда, ученые узнали о том, что атом состоит из ядра, протонов и электронов. Эту картину довершил Джеймс Чедвик - ученик Резерфорда. Он открыл нейтрон.

Чедвик провел эксперимент, который показал, что ядро состоит из протонов и нейтронов. Для этого он использовал очень умный метод распознавания. Для перехвата частиц, которые выходили из радиоактивного процесса, Чедвик применял твердый парафин.

Открытие нейтрона стало величайшим научным достижением. В 1939 году группа ученых во главе с Энрико Ферми использовали нейтрон для расщепления атома, открыв дверь в век ядерных технологий.

Сверхпроводники. Лаборатория Ферми обладает одним из крупнейших в мире ускорителем частиц. Это 7-километровое подземное кольцо, в котором субатомные частицы ускоряются почти до скорости света, а затем сталкиваются. Это стало возможным только после того, как появились сверхпроводники.

Сверхпроводники были открыты примерно в 1909 году. Голландский физик по имени Хейке Камерлинг-Оннес стал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры - растет она или падает.

Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называется сверхпроводимостью.

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача - найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля - это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее.

Кварк. Данное открытие - это поиск мельчайших частиц материи во Вселенной.

Сначала был открыт электрон, затем протон, а потом нейтрон. Теперь у науки была новая модель атома, из которых состоит любое тело.

С разработкой ускорителей, которые могли сталкивать субатомные частицы на скорости света, человек узнал о существовании десятков других частиц, на которые разбивались атомы. Физики стали называть все это «зоопарком частиц».

Американский физик Мюррей Гелл-Ман заметил закономерность в ряде новооткрытых частиц «зоопарка». Он делил частицы по группам в соответствии с обычными характеристиками. По ходу он изолировал мельчайшие компоненты ядра атома, из которых состоят сами протоны и нейтроны.

Он предполагал, что нейтрон или протон не являются элементарными частицами, как думали многие, а состоят из еще более мелких частиц - кварков - в необычными свойствами.

Открытые Гелл-Маном кварки были для субатомных частиц тем же, чем была периодическая таблица для химических элементов. За свое открытие в 1969 году Мюррею Гелл-Ману была присуждена Нобелевская премия в области физики. Его классификация мельчайших материальных частиц упорядочила весь их «зоопарк».

Хотя Гелл-Маном был уверен в существовании кварков, он не думал, что кто-то сможет их в действительности обнаружить. Первым подтверждением правильности его теорий были удачные эксперименты его коллег, проведенные на Стэнфордском линейном ускорителе. В нем электроны отделялись от протонов, и делался макроснимок протона. Оказалось, что в нем было три кварка.

После открытий Исаака Ньютона и Майкла Фарадея ученые считали, что у природы две основные силы: гравитация и электромагнетизм. Но в ХХ веке были открыты еще две силы, объединенные одним понятием - атомная энергия. Таким образом, природных сил стало четыре.

Каждая сила действует в определенном спектре. Гравитация не дает нам улететь в космос со скоростью 1500 км/ч. Затем у нас есть электромагнитные силы - это свет, радио, телевидение и т.д. кроме этого существую еще две силы, поле действия которых сильно ограничено: есть ядерное притяжение, которое не дает ядру распасться, и есть ядерная энергия, которая излучает радиоактивность и заражает все подряд, а также, кстати, нагревает центр Земли, именно благодаря ей центр нашей планеты не остывает вот уже несколько миллиардов лет - это действие пассивной радиации, которая переходи в тепло.

Как обнаружить пассивную радиацию? Это возможно благодаря счетчикам Гейгера. Частицы, которые высвобождаются, когда расщепляется атом, попадают в другие атомы, в результате чего создается небольшой электроразряд, который можно измерить. При его обнаружении счетчик Гейгера щелкает.

Как же измерить ядерное притяжение? Тут дело обстоит труднее, потому что именно эта сила не дает атому распасться. Здесь нам нужен расщепитель атома. Нужно буквально разбить атом на осколки, кто-то сравнил этот процесс со сбросом пианино с лестницы с целью разобраться в принципах его работы, слушая звуки, которые пианино издает, ударяясь о ступеньки.

Итак, у нас есть четыре силы фундаментального взаимодействия: гравитация (gravity), электромагнетизм (electromagnetism), ядерное притяжение (weak force, слабое взаимодействие) и ядерная энергия (strong force, сильное взаимодействие). Последние две называются квантовыми силами, их описание можно объединить в нечто под названием стандартной модели. Возможно, это самая уродливая теория в истории науки, но она действительно возможна на субатомном уровне. Теория стандартной модели претендует на то, чтобы стать высшей, но от этого она не перестает быть уродливой. С другой стороны, у нас есть гравитация - великолепная, прекрасная система, она красива до слез - физики буквально плачут, видя формулы Эйнштейна. Они стремятся объединить все силы природы в одну теорию и назвать ее «теория всего». Она объединила бы все четыре силы в одну суперсилу, которая существует с начала времен.

Неизвестно, сможем ли мы когда-нибудь открыть суперсилу, которая включала бы в себя все четыре основные силы Природы и сможем ли создать физическую теорию Всего. Но одно известно точно: каждое открытие ведет к новым исследованиям, а люди - самый любопытный вид на планете - никогда не перестанут стремиться понимать, искать и открывать.

Волновые свойства электронов. Когда в 1911 Бор и Резерфорд предложили модель атома, которая была очень похожая на Солнечную систему, казалось, что мы познали все тайны материи. Ведь на ее основе, учитывая дополнения Эйнштейна и Планка о природе света, ученые смогли рассчитать спектр атома водорода. Однако уже с атомом гелия возникли трудности. Теоретические расчеты значительно расходились с экспериментальными данными.

Немецкий физик Гейзенберг установил, что нельзя одновременно определить местонахождение и скорость электронов. Чем точнее мы определяем скорость электрона, тем неопределеннее становится его местоположение. Это соотношение было названо «принцип неопределенности Гейзенберга». Однако на этом странности электронов не закончились. В двадцатых годах физики уже знали, что свет обладает свойствами, как волны, так и частицы. Поэтому французский ученый де Бройль в 1923 году предположил, что подобными свойствами могут обладать и другие элементарные частицы, в частности электроны. Ему удалось поставить ряд опытов, которые подтвердили волновые свойства электрона.

Деление атома. Тридцатые годы прошлого века можно назвать радиоактивными. Все началось в 1920 году, когда Эрнест Резерфорд высказал гипотезу о том, что позитивно заряженные протоны удерживаются в ядре атома благодаря неким частицам имеющим нейтральный заряд. Резерфорд предложил назвать эти частицы нейтронами.

Это предположение было забыто физиками на долгие годы. О нем вспомнили только в 1930 году, когда немецкие физики Боте и Беккер заметили, что при облучении бора или бериллия альфа-частицами возникает необычное излучение.

января 1932 года Фредерик и Ирен Жолио-Кюри направили излучение Боте-Беккера на тяжелые атомы. Как оказалось, под воздействием этого излучения атомы стали радиоактивными. Таким образом была открыта искусственная радиоактивность. Джеймс Чедвик повторил опыты супругов Жолио-Кюри и выяснил, что во всем виноваты некие нейтрально заряженные частицы, с массой близкой к протону. Электрическая нейтральность позволяет этим частицам беспрепятственно проникать в ядро атома и дестабилизировать его. Это открытие позволило создать как мирные АЭС, так и самое разрушительное оружие - ядерную бомбу.

Полупроводники и транзисторы. 16 декабря 1947 года инженеры американской компании АТ&Т Веll Laboratories Уильям Шокли, Джон Бардин и Уолтер Браттейн смогли при помощи малого тока управлять большим током. В этот день был изобретен транзистор - маленький прибор, состоящий из двух направленных навстречу друг другу двух p-n переходов.

Это позволило создать прибор, который мог управлять током. Транзистор пришел на смену электронных ламп, что позволило значительно сократить как вес аппаратуры, так и потребляемую приборами электроэнергию. Он открыл дорогу в жизнь логическим микросхемам, что привело к созданию в 1971 году первого микропроцессора. Дальнейшее развитие микроэлектроники позволило создать современные процессоры для компьютеров.

Освоение космоса. 4 октября 1957 года Советский Союз запустил первый в мире искусственный спутник Земли. И пусть он был совсем небольшим и практически не имел научной аппаратуры на борту, именно с этого момента человечество вступило в космическую эру. Не прошло и четырех лет, как 12 апреля 1961 года в космос полетел человек. И опять Советскому Союзу удалось опередить США и раньше всех отправить на орбиту вокруг нашей планеты первого космонавта - Юрия Гагарина. Это событие подхлестнуло научно-технический прогресс. Две великие державы начали гонку по освоению космоса. Следующей целью была высадка человека на Луну. Чтобы осуществить этот проект, понадобилось совершить множество изобретений. Здесь уже праздновали победу конструкторы США.

Сначала космос был лишь затратным проектом, отдача от которого была крайне малой. Однако постепенное освоение космоса позволило человечеству создать системы, без которых уже не мыслима наша жизнь. Особые успехи были достигнуты в области предсказания погоды, геологоразведки, связи и позиционирования на поверхности планеты. Это позволило сделать запуски космических спутников коммерчески выгодными.

Углеродные нанотрубки. В 1985 году исследователи Роберт Керл, Хит ОБрайен, Гарольд Крото и Ричард Смолли изучали масс-спектры паров графита, образованные под воздействием лазера. Так были открыты новые вариации углерода получившие название «фуллерен» (в честь инженера Бакминстера Фуллера) и «регбен» (поскольку его молекула напоминает мяч для игры в регби).

Эти уникальные образования имеют целый ряд полезных физических свойств, поэтому их широко применяют в различных приборах. Однако не это самое главное. Ученые разработали технологию получения из этих вариаций углерода нанотрубок - скрученных и сшитых слоев графита. Уже получены нанотрубки длиной в 1 сантиметр и диаметром в 5-7 нанометров! При этом такие нанотрубки имеют самые различные физические свойства - от полупроводниковых до металлических.

На их основе получены новые материалы для дисплеев и оптоволоконной связи. Кроме того, в медицине нанотрубки используются для доставки биологически активных веществ в нужное место организма. На их основе разработаны топливные элементы и сверхчувствительные датчики химических веществ, а также много других полезных девайсов.

Таким образом, говоря о роли физики, выделим три основных момента. Во-первых, физика является для человека важнейшим источником знаний об окружающем мире. Во-вторых, физика, непрерывно расширяя и многократно умножая возможности человека, обеспечивает его уверенное продвижение по пути технического прогресса. В-третьих, физика вносит существенный вклад в развитие духовного облика человека, формирует его мировоззрение, учит ориентироваться в шкале культурных ценностей. Поэтому будем говорить соответственно о научном, техническом и гуманитарном потенциалах физики.

Эти три потенциала содержались в физике всегда. Но особенно ярко и весомо они проявились в физике XX столетия, что и предопределило ту исключительно важную роль, какую стала играть физика в современном мире.

Физика как важнейший источник знаний об окружающем мире. Как известно, физика исследует наиболее общие свойства и формы движения материи. Она ищет ответы на вопросы: как устроен окружающий мир; каким законам подчиняются происходящие в нем явления и процессы? Стремясь познать «первоначала вещей» и «первопричины явлений», физика в процессе своего развития сформировала сначала механическую картину мира (XVIIІ - XIX вв.), затем электромагнитную картину (вторая половина XIX - начало XX в.) и, наконец, современную физическую картину мира (середина XX в.).

3. Значение физики в современном мире

Последние десятилетия бедны на открытия, как никогда еще в истории человечества. Практически ни в одной области знаний не появилось ничего принципиально нового, лишь продолжение уже сделанного, логические следствия из старых открытий. Ну и, разумеется, новые технологии, базирующиеся, опять же, на все тех же известных уже фактах. Высокая физика взяла отпуск, а большинство ученых занимается прикладными проблемами.

На заре возникновения наук физика являлась частью философии и была наукой не столько «точной», как это принято теперь называть, сколько описательной. Не существовало «точного» языка, который мог бы привести физику к какому-либо единому знаменателю, сделать ее менее умозрительной. То есть не существовало соответствующей физическим теориям математики.

Тем не менее, отсутствие математики не помешало созданию атомистической теории Левкиппа-Демокрита, не явилось препятствием для Лукреция, который смог эту теорию подробно и вполне доступно изложить. А ведь, согласно дошедшим до нас сведениям, Демокрит отнюдь не был учеником знаменитых в то время философов и материалистов. Напротив, его обучением занимались маги и халдеи. И изучал он не сколько будет дважды два, а теорию левитации, чтение мыслей на расстоянии, телепортацию и прочие совершенно невероятные вещи, которые современная традиционная наука практически полностью отметает как несуществующие, сказочные фантазии. И все же именно эти «фантазии» позволили создать одну из самых материалистических теорий. Казалось бы - невероятно! Но, как видите, не просто возможно, а состоявшийся факт. Современная физика, как наука фундаментальная, находится в состоянии глубокого кризиса. Это стало известно отнюдь не сегодня. Чуть не с начала ХХ столетия многие ученые пытались обратить внимание на простой факт: физика зашла в тупик, математический аппарат, который являлся изначально языком физики, стал настолько громоздок, что не столько описывает физические явления, сколько маскирует их сущность. Более того, этот математический аппарат безнадежно устарел и отстал, с его помощью невозможно описать, а уж тем более объяснить многие наблюдаемые явления, результаты и суть проводимых экспериментов и так далее.

Как вообще появляется и эволюционирует язык? Если рассматривать упрощенно, то возникновение языка - следствие усложняемости быта и увеличения количества знаний. На заре цивилизации аудиальное общение являлось лишь дополняющим, вполне можно было обойтись языком жестов и телодвижений. Но объем информации постоянно увеличивался, и для ее описания, передачи с помощью языка жестов приходилось тратить слишком много времени, а точность передачи оставляла желать лучшего (представьте на мгновение, как может, например, инвалид, погрызенный на охоте саблезубым тигром, объяснить новые принципы устройства ловушек - его будет весьма затруднительно понять, ведь он ограничен в возможностях жестикуляции). Зато аудиальная передача информации не имела подобных минусов и стала широко распространяться. Каждому предмету начал соответствовать определенный символ-слово.

Если бы человечество остановилось на языке жестов, то, скорее всего, какой-то относительно цивилизованный быт можно было бы наладить, а вот о развитии науки пришлось бы забыть. Подумайте - как можно выразить с помощью жестов понятие кибернетики, как объяснить, что такое компьютер? Опять же, развитие науки и техники требует соответствующей языковой эволюции. Представьте, что слово «компьютер» не появилось, да и никакого другого его заменителя. Как приходилось бы объяснять, о чем идет речь? «Электронное устройство, умеющее считать и решать логические задачи, оснащенное прямоугольным экраном и набором клавиш»? Согласитесь, это не только звучит дико, но еще и крайне неудобно для пользователя. Если бы каждый раз, говоря о компьютере, приходилось описывать его таким громоздким набором символов, то о всяком развитии в кибернетике пришлось бы забыть.

Но именно эта ситуация сложилась в физике, язык которой - математика - отстал и не в состоянии уже описывать наблюдаемые явления. Громоздкие и неудобоваримые формулы напоминают вышеприведенное описание компьютера: они так же «удобны» для работы и столь же «полно» описывают предмет, символом которого являются.

В результате остается либо отложить в сторону попытки дальнейшего познания мира - до тех пор, пока математика не начнет справляться с возложенной на нее… нет, не задачей, миссией; либо воспользоваться методом Демокрита и описывать явления, минимально пользуясь математикой.

Заключение

Таким образом, можно сделать вывод, что ещё в начале ХХ столетия люди не могли себе даже представить, что такое автомобиль, телевизор или компьютер. Научные открытия в ХХ веке оказали существенное влияние на всё человечество. В ХХ веке было сделано больше научных открытий, чем за все предыдущие столетия. Знания человечества стремительно растут, поэтому можно с уверенностью сказать, что если такая тенденция сохранится, то в 21 веке будет совершено ещё больше научных открытий, что может в корне изменить жизнь человека.

Вместе с тем, нет необходимости доказывать, что современное миропонимание - важный компонент человеческой культуры. Каждый культурный человек должен хотя бы в общих чертax представлять, как устроен мир, в котором он живет. Это необходимо не только для общего развития. Любовь к природе предполагает уважение к происходящим в ней процессам, а для этого надо понимать, по каким законам они совершаются. Мы имеем много поучительных примеров, когда природа наказывала нас за наше невежество; пора научиться извлекать из этого уроки. Нельзя также сбывать, что именно знание законов природы есть эффективное оружие борьбы с мистическими представлениями, есть фундамент атеистического воспитания.

Современная физика вносит существенный вклад в выработку нового стиля мышления, который можно назвать планетарным мышлением. Она обращается к проблемам, имеющим большое значение для всех стран и народов. Сюда относятся, например, проблемы солнечно-земных связей, касающиеся воздействия солнечных излучений на магнитосферу, атмосферу и биосферу Земли; прогнозы физической картины мира после ядерной катастрофы, если таковая разразится; глобальные экологические проблемы, связанные с загрязнением Мирового океана и земной атмосферы.

В заключение отметим, что, воздействуя на самый характер мышления, помогая ориентироваться в шкале жизненных ценностей, физика способствует, в конечном счете, выработке адекватного отношения к окружающему миру и, в частности, активной жизненной позиции. Любому человеку важно знать, что мир в принципе познаваем, что случайность не всегда вредна, что нужно и можно ориентироваться и работать в мире, насыщенном случайностями, что в этом изменяющемся мире есть тем не менее «опорные точки», инварианты (что бы ни менялось, а энергия сохраняется), что по мере углубления знаний картина неизбежно усложняется, становится диалектичнее, так что вчерашние «перегородки» более не годятся.

Мы убеждаемся, таким образом, что современная физика действительно содержит в себе мощный гуманитарный потенциал. Можно не считать слишком большим преувеличением слова американского физика И. Раби: «Физика составляет сердцевину гуманитарного образования нашего времени».

физика научное открытие

Список использованной литературы

1.Анкин Д.В. Актуальные проблемы теории познания. Екатеринбург: Уральский ун-т, 2013 - 69 с.

2.Батурин ВК. Основы теории познания и современная философия науки: монография. Одинцово: Одинцовский гуманитарный ин-т, 2010 - 244 с.

.Илларионов С.В. Теория познания и философия науки / С. В. Илларионов. Москва: РОССПЭН, 2007 - 535 с.

.Куликова О.Б. Философия познания: анализ основных проблем. Общая характеристика методов научного познания: Иваново: Ивановский гос. энергетический ун-т им. В.И. Ленина, 2009 - 91 с.

.Курашов В.И. Теоретическая и практическая философия в кратчайшем изложении. Москва: Университет. Книжный дом, 2007 - 131 с.

.Мотрошилова Н.В. Отечественная философия 50-80-х годов XX века и западная мысль. Москва: Акад. проект, 2012 - 375 с.

.Орлов В.В. История человеческого интеллекта. Пермь: Пермский гос. ун-т, 2007 - 187 с.

.Старостин А.М. Социально-гуманитарное познание в контексте философской инноватики. Ростов-на-Дону: Дониздат, 2013- 512 с.

.Тетюев Л.И. Теоретическая философия: проблема познания: Современные дискуссии вокруг теории познания. Саратов: Наука, 2010 - 109 с.

10.Щедрина Т.Г. Философия познания. Москва: РОССПЭН, 2010 - 663 с.

Термины

1.АБСОЛЮТНО ЧЁРНОЕ ТЕЛО - это модель тела, полностью поглощающего любое падающее на его поверхность электромагнитное излучение. Наиболее близким приближением к абсолютно черному телу является устройство, состоящее из замкнутой полости с отверстием, размеры которого малы по сравнению с размерами самой полости.

2.АДАТОМ - атом на поверхности кристалла.

.АДИАБАТИЧЕСКОЕ ПРИБЛИЖЕНИЕ - приближение в теории твёрдого тела, при котором движение остовов ионов кристаллической решётки рассматривается в качестве возмущения.

.АКЦЕПТОР - примесь в полупроводниковом материале, которая захватывает свободный электрон.

.АЛЬФА-ЧАСТИЦА (α-частица) - ядро атома гелия. Содержит два протона и два нейтрона. Испусканием α-частиц сопровождается одно из радиоактивных превращений (альфа-распад ядер) некоторых химических элементов.

.АННИГИЛЯЦИЯ - это один из видов взаимопревращений элементарных частиц, в котором частица и соответствующая ей античастица превращаются в электромагнитное излучение.

.АНТИЧАСТИЦЫ - это элементарные частицы, отличающиеся от соответствующих им частиц знаком электрического, барионного и лептонного зарядов, а также некоторых других характеристик.

.БАРИОННЫЙ ЗАРЯД (барионное число) (b) - характеристика элементарных частиц, равная +1 для барионов, -1 для антибарионов и 0 для всех остальных частиц.

.БЕТА-ЧАСТИЦА - испускаемый при бета-распаде электрон. Поток бета-частиц является одним из видов радиоактивных излучений с проникающей способностью, большей, чем у альфа-частиц, но меньшей, чем у гамма-излучения.

10.ВАЛЕНТНАЯ ЗОНА - зона валентных электронов, при нулевой температуре в собственном полупроводнике полностью заполнена.

11.ВОДОРОДОПОДОБНЫЕ АТОМЫ - ионы, состоящие, подобно атому водорода, из ядра и одного электрона. К ним относятся ионы элементов с атомным номером Z больше или равным 2, потерявшие все электроны, кроме одного: He+, Li2+ и т. д.

.ВОЗБУЖДЁННОЕ СОСТОЯНИЕ квантовой системы (атома, молекулы, атомного ядра и т. д.) - неустойчивое состояние с энергией, превышающей энергию основного (нулевого) состояния.

.ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА - зависимость тока от напряжения. Основная характеристика для любого полупроводникового прибора.

.ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ (индуцированное излучение) - это электромагнитное излучение, испускаемое возбужденными атомами или молекулами под действием внешнего излучения такой же частоты. Испущенное вынужденное излучение совпадает с вынуждающим не только по частоте, но и по направлению распространения, поляризации и фазе, ничем от него не отличаясь.

.ГАЛЛИЙ - элемент пятой группы периодической системы элементов.

.ГАЛЬВАНОМАГНИТНЫЕ ЭФФЕКТЫ - эффекты связанные с действием магнитного поля на электрические (гальванические) свойства твердотельных проводников.

.ГАММА-ИЗЛУЧЕНИЕ (гамма-кванты) - коротковолновое электромагнитное излучение с длиной волны меньше 2×10-10 м.

.ГИПЕРОНЫ - это элементарные частицы, относящиеся к классу барионов наряду с нуклонами (протон, нейтрон). Гипероны более массивны, чем нуклоны, и имеют отличную от нуля характеристику элементарных частиц, называемую странностью.

.ГЛАВНОЕ КВАНТОВОЕ ЧИСЛО (n) - это целое число, определяющее возможные значения энергии стационарных состояний атомов водорода и водородоподобных атомов.

.ДВУМЕРНЫЙ ЭЛЕКТРОННЫЙ ГАЗ - электронный газ, который находится в потенциальной яме, ограничивающей движение по одной из координат.

.ДЕЙТЕРИЙ - тяжелый стабильный изотоп водорода с массовым числом 2. Содержание в природном водороде 0,156% (по массе).

.ДЕЙТРОН - это ядро атома дейтерия. Состоит из одного протона и одного нейтрона.

.ДЕФЕКТ МАССЫ - это разность между суммой масс частиц (тел), образующих связанную систему, и массой всей этой системы.

.ДЕФЕКТЫ КРИСТАЛЛА - любое нарушение периодичности кристалла.

.ДИВАКАНСИЯ - конгломерат дефектов кристалла, состоящий из двух вакансий.

.ДИОД - полупроводниковый прибор с двумя электродами.

.ДИСЛОКАЦИЯ - линейный дефект в кристалле.

.ДИСЛОКАЦИЯ НЕСООТВЕТСТВИЯ - один из типов линейных дефектов в кристалле, когда дополнительная полуплоскость вставлена в кристаллическую решётку.

.ДОЗА ИЗЛУЧЕНИЯ - это физическая величина, являющаяся мерой радиационного воздействия на живые организмы радиоактивных излучений или частиц высокой энергии. Различают поглощенную дозу излучения, эквивалентную дозу и экспозиционную дозу.

.ДОНОР - тип легирующих примесей, поставляющих свободные электроны.

.ДЫРКА - квазичастица в твёрдом теле с положительным зарядом, равным по абсолютному значению заряду электрона.

.ДЫРОЧНАЯ ПРОВОДИМОСТЬ - в полупроводнике с p-типом проводимости основные носители заряда дают основной вклад в проводимость.

.ДЫРОЧНЫЙ ПОЛУПРОВОДНИК - полупроводник с p-типом проводимости, основные носители тока - дырки.

.ЗАКОН РАДИОАКТИВНОГО РАСПАДА - количество нераспавшихся радиоактивных ядер в любом образце уменьшается вдвое через каждый интервал времени, называемый периодом полураспада.

.ЗАКОН СМЕЩЕНИЯ ВИНА - при повышении температуры максимум энергии в спектре излучения абсолютно черного тела смещается в сторону более коротких волн и притом так, что произведение длины волны, на которую приходится максимум энергии излучения, и абсолютной температуры тела равно постоянной величине.

.ЗАКОН СТЕФАНА-БОЛЬЦМАНА - энергия, излучаемая за одну секунду единицей площади поверхности абсолютно черного тела, прямо пропорциональна четвертой степени его абсолютной температуры.

.ЗАТВОР - управляющий электрод в полевом транзисторе.

.ЗОНА - термин зонной теории, обозначающий область разрешённых значений энергии, которые могут принимать электроны или дырки.

.ЗОННАЯ ТЕОРИЯ ТВЁРДЫХ ТЕЛ - одноэлектронная теория для периодического потенциала, объясняющая многие электрофизические свойства полупроводников. Использует адиабатическое приближение.

.ИЗЛУЧАТЕЛЬНАЯ РЕКОМБИНАЦИЯ - рекомбинация с испусканием одного или нескольких фотонов при гибели электрон-дырочной пары; источник излучения в светодиодах и лазерных диодах.

.ИЗОТОПЫ - это разновидности данного химического элемента, различающиеся массовым числом своих ядер. Ядра изотопов одного элемента содержат одинаковое число протонов, но разное число нейтронов. Имея одинаковое строение электронных оболочек, изотопы обладают практически одинаковыми химическими свойствами. Однако по физическим свойствам изотопы могут различаться весьма резко.

.ИНЖЕКЦИЯ - явление, приводящее к появлению неравновесных носителей в полупроводнике при пропускании электрического тока через p-n-переход или гетеропереход.

.ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ - это излучение, взаимодействие которого со средой приводит к ионизации ее атомов и молекул. Это рентгеновское излучение и γ-излучение, потоки β-частиц, электронов, позитронов, протонов, нейтронов и т. д. Видимое и ультрафиолетовое излучения не относят к ионизирующим излучениям.

.ИСТОК - термин, обозначающий один из контактов в полевом транзисторе.

.КВАНТ СВЕТА (фотон) - порция энергии электромагнитного излучения, элементарная частица, являющаяся порцией электромагнитного излучения, переносчик электромагнитного взаимодействия.

.КВАРКИ - это точечные, бесструктурные образования, относящиеся к истинно элементарным частицам, которые были введены для систематизации многочисленных (более сотни) элементарных частиц, открытых в XX веке (электрон, протон, нейтрон и т.д.). Характерной особенностью кварков, не встречающейся у других частиц, является дробный электрический заряд, кратный 1/3 элементарного. Попытки обнаружить кварки в свободном состоянии к успеху не привели.

.КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ - это универсальное свойство природы, заключающееся в том, что в поведении микрообъектов проявляются и корпускулярные, и волновые черты.

.КОЭФФИЦИЕНТ РАЗМНОЖЕНИЯ НЕЙТРОНОВ - это характеристика цепного процесса распада радиоактивных ядер, равная отношению числа нейтронов в каком-либо поколении цепной реакции к породившему их числу нейтронов в предыдущем поколении.

.КРАСНАЯ ГРАНИЦА ФОТОЭФФЕКТА - это минимальная частота света ν0 или максимальная длина волны λ0, при которой еще возможен фотоэффект.

.КРЕМНИЙ - полупроводник, основной материал современной полупроводниковой промышленности.

.КРИСТАЛЛ - идеализированная модель твёрдого тела с трансляционной симметрией.

.КРИТИЧЕСКАЯ МАССА - это минимальная масса ядерного топлива, при которой возможна цепная реакция деления ядер.

.ЛАЗЕР (оптический квантовый генератор) - это источник света, работающий на принципе вынужденного излучения.

.ЛИНЕЙЧАТЫЕ СПЕКТРЫ - это оптические спектры, состоящие из отдельных спектральных линий. Линейчатые спектры характерны для излучения нагретых веществ, находящихся в газообразном атомарном (но не молекулярном) состоянии.

.ЛЮМИНЕСЦЕНЦИЯ - это избыточное над тепловым электромагнитное излучение тела (холодное свечение), вызванное либо бомбардировкой вещества электронами (катодолюминесценция), либо пропусканием через вещество электрического тока (электролюминесценция), либо действием какого-либо облучения (фотолюминесценция).

.ЛЮМИНОФОРЫ - это твердые и жидкие вещества, способные излучать свет под действием потоков электронов (катодолюминофоры), ультрафиолетового излучения (фотолюминофоры) и т.п.

.МАССОВОЕ ЧИСЛО - это число нуклонов (протонов и нейтронов) в атомном ядре. Массовое число равно округленной до целого числа относительной атомной массе элемента. Для массового числа существует закон сохранения, являющийся частным случаем закона сохранения барионного заряда.

.НЕЙТРИНО - это легкая (возможно, безмассовая) электрически нейтральная частица, участвующая только в слабом и гравитационном взаимодействиях. Отличительное свойство нейтрино - огромная проникающая способность. Считается, что эти частицы заполняют все космическое пространство со средней плотностью около 300 нейтрино на 1 см3.

.НЕЙТРОН - это электрически нейтральная частица, имеющая массу, в 1839 раз превышающую массу электрона. Свободный нейтрон - нестабильная частица, распадающаяся на протон и электрон. Нейтрон является одним из нуклонов (наряду с протоном) и входит в состав атомного ядра.

.НЕПРЕРЫВНЫЙ СПЕКТР (сплошной спектр) - это спектр, содержащий непрерывную последовательность всех частот (или длин волн) электромагнитных излучений, плавно переходящих друг в друга.

.НУКЛЕОСИНТЕЗ - это последовательность ядерных реакций, ведущая к образованию все более тяжелых атомных ядер из других, более легких.

.НУКЛОНЫ - это общее наименование для протонов и нейтронов - частиц, из которых построены атомные ядра.

.ОПТИЧЕСКИЕ ПЕРЕХОДЫ - переходы электрона в твёрдом теле между состояниями с различной энергиями с испусканием или поглощением света.

.ОСНОВНОЕ СОСТОЯНИЕ - это состояние атома, молекулы или какой-либо другой квантовой системы с наименьшим из возможных значений внутренней энергии. В отличие от возбужденных состояний основное состояние является устойчивым.

.ОСНОВНЫЕ НОСИТЕЛИ - тип преобладающих в полупроводнике носителей заряда.

.ПЕРИОД ПОЛУРАСПАДА - это промежуток времени, в течение которого исходное число радиоактивных ядер в среднем уменьшается вдвое. У разных элементов он может принимать значения от многих миллиардов лет до долей секунды.

.ПОЗИТРОН - элементарная частица с положительным зарядом, равным заряду электрона, с массой, равной массе электрона. Она является античастицей по отношению к электрону.

.ПОЛОСАТЫЕ СПЕКТРЫ - это оптические спектры молекул и кристаллов, состоящие из широких спектральных полос, положение которых различно для различных веществ.

.ПОСТУЛАТЫ БОРА - это основные принципы «старой» квантовой теории - теории атома, разработанной в 1913 г. датским физиком Бором.

.ПРОТОН - это положительно заряженная элементарная частица, имеющая массу, превышающую массу электрона в 1836 раз; ядро атома водорода. Протон (наряду с нейтроном) является одним из нуклонов и входит в состав атомных ядер всех химических элементов.

.РАБОТА ВЫХОДА - минимальная работа, которую необходимо совершить для удаления электрона из твердого или жидкого вещества в вакуум. Работа выхода определяется родом вещества и состоянием его поверхности.

.РАДИОАКТИВНОСТЬ - это способность некоторых атомных ядер самопроизвольно превращаться в другие ядра, испуская при этом различные частицы: Всякий самопроизвольный радиоактивный распад экзотермичен, то есть происходит с выделением тепла.

.СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ - это одно из четырех фундаментальных взаимодействий элементарных частиц, частным проявлением которого являются ядерные силы.

.СЛАБОЕ ВЗАИМОДЕЙСТВИЕ - это одно из четырех фундаментальных взаимодействий элементарных частиц, частным проявлением которого является бета-распад атомных ядер.

.СООТНОШЕНИЕ НЕОПРЕДЕЛЁННОСТЕЙ - это фундаментальное соотношение квантовой механики, согласно которому произведение неопределенностей («неточностей») в координате и соответствующей проекции импульса частицы при любой точности их одновременного измерения не может быть меньше величины, равной половине постоянной Планка.

.СПЕКТР ИЗЛУЧЕНИЯ - это совокупность частот или длин волн, содержащихся в излучении данного вещества.

.СПЕКТР ПОГЛОЩЕНИЯ - это совокупность частот (или длин волн) электромагнитных излучений, поглощаемых данным веществом.

.СПЕКТРАЛЬНЫЙ АНАЛИЗ - это метод определения химического состава вещества по его спектру.

.СПИН - это собственный момент импульса элементарной частицы. Имеет квантовую природу и (в отличие от момента импульса обычных тел) не связан с движением частицы как целого.

.ТЕПЛОВОЕ ИЗЛУЧЕНИЕ - это электромагнитное излучение, возникающее за счет внутренней энергии испускающего его вещества.

.ТЕРМОЯДЕРНЫЕ РЕАКЦИИ - это ядерные реакции между легкими атомными ядрами, протекающие при очень высоких температурах (~108 К и выше).

.ТРЕК - это след, оставляемый заряженной частицей в детекторе.

.ТРИТИЙ - это сверхтяжелый радиоактивный изотоп водорода с массовым числом 3. Среднее содержание трития в природных водах - 1 атом на 1018 атомов водорода.

.УРАВНЕНИЕ ЭЙНШТЕЙНА для фотоэффекта - это уравнение, выражающее связь между энергией участвующего в фотоэффекте фотона, максимальной кинетической энергией вылетевшего из вещества электрона и характеристику металла, на котором наблюдается фотоэффект, - работу выхода для металла.

.ФОТОН - это элементарная частица, являющаяся квантом электромагнитного излучения (в узком смысле - света).

.ФОТОЭФФЕКТ (внешний фотоэффект) - это испускание электронов телами под действием света.

.ХИМИЧЕСКИЕ ДЕЙСТВИЯ СВЕТА - это действия света, в результате которых в веществах, поглощающих свет, происходят химические превращения - фотохимические реакции.

.ЦЕПНАЯ РЕАКЦИЯ - это самоподдерживающаяся реакция деления тяжелых ядер, в которой непрерывно воспроизводятся нейтроны, делящие все новые и новые ядра.

.ЧЁРНАЯ ДЫРА - это область пространства, в которой существует настолько сильное гравитационное поле, что даже свет не может покинуть эту область и уйти в бесконечность.

.ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ - это условное название большой группы микрообъектов, не являющихся атомами или атомными ядрами (за исключением протона - ядра атома водорода).

.ЭНЕРГИЯ СВЯЗИ АТОМНОГО ЯДРА - это минимальная энергия, которая необходима для полного расщепления ядра на отдельные нуклоны.

.ЭФФЕКТ КОМПТОНА - это уменьшение частоты электромагнитного излучения при его рассеянии на свободных электронах.

.ЯДЕРНАЯ (ПЛАНЕТАРНАЯ) МОДЕЛЬ АТОМА - модель строения атома, предложенная английским физиком Резерфордом, согласно которой атом так же пуст, как Солнечная система.

.ЯДЕРНЫЕ РЕАКЦИИ - это превращения атомных ядер в результате взаимодействия друг с другом или какими-либо элементарными частицами.

.ЯДЕРНЫЕ СИЛЫ - это мера взаимодействия нуклонов в атомном ядре. Именно эти силы удерживают одноименно заряженные протоны в ядре, не давая им разлететься под действием электрических сил отталкивания.

.ЯДЕРНЫЕ ФОТОЭМУЛЬСИИ - это фотоэмульсии, используемые для регистрации треков заряженных частиц. При исследовании частиц высоких энергий эти фотоэмульсии укладываются в стопки из нескольких сотен слоев.

.ЯДЕРНЫЙ РЕАКТОР - это устройство, в котором осуществляется управляемая цепная реакция деления ядер. Главной частью ядерного реактора является активная зона, в которой протекает цепная реакция и происходит выделение ядерной энергии.

100.ЯДРО (атомное) - это положительно заряженная центральная часть атома, в которой сосредоточено 99,96% его массы. Радиус ядра ~10-15 м, что приблизительно в сто тысяч раз меньше радиуса всего атома, определяемого размерами его электронной оболочки.

Персоналии

1.АБДУС САЛАМ. Вклад в объединённую теорию слабых и электромагнитных взаимодействий между элементарными частицами, в том числе предсказание слабых нейтральных токов.

2.АЙВОР ДЖАЙЕВЕР. Экспериментальные открытия туннельных явлений в полупроводниках и сверхпроводниках соответственно.

.АЛЕКСАНДР ГРИГОРЬЕВИЧ СТОЛЕТОВ (1839-1896). Александр Григорьевич Столетов родился 10 августа 1839 года в семье небогатого владимирского купца. Его отец, Григорий Михайлович, владел небольшой бакалейной лавкой и мастерской по выделке кож.

.АЛЬБЕРТ ЭЙНШТЕЙН (1879-1955). Его имя часто на слуху в самом обычном просторечии. «Эйнштейном здесь и не пахнет»; «Ничего себе Эйнштейн»; «Да, это точно не Эйнштейн!». В его век, когда доминировала как никогда ранее наука, он стоит особняком, словно некий символ интеллектуальной мощи Иной раз даже как бы возникает мысль" человечество делится на две части - Альберт Эйнштейн и весь остальной мир.

.АЛЬФРЕД КАСТЛЕР. Открытие и разработку оптических методов исследования резонансов Герца в атомах.

.АМЕДЕО АВОГАДРО (1776-1856). В историю физики Авогадро вошел как автор одного из важнейших законов молекулярной физики. Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето родился 9 августа 1776 года в Турине - столице итальянской провинции Пьемонт в семье служащего судебного ведомства Филиппе Авогадро. Амедео был третьим из восьми детей.

.АНДРЕ МАРИ АМПЕР (1775-1836). Французский ученый Ампер в истории науки известен, главным образом, как основоположник электродинамики. Между тем он был универсальным ученым, имеющим заслуги и в области математики, химии, биологии и даже в лингвистике и философии. Это был блестящий ум, поражавший своими энциклопедическими знаниями всех близко знавших его людей.

Презентация на тему "Физики 18–20 веков" по физике в формате powerpoint. В данной презентации для школьников рассказывается об ученых 18-20 веков, внесших наибольший вклад в развитие физики. Автор презентации: Кравченко Иван Иванович, учитель физики и информатики.

Фрагменты из презентации

Физики 18 века

Томас Юнг

Дата рождения 13 июня 1773, - английский физик, врач, астроном и востоковед, один из создателей волновой теории света. Наиболее важные направления его работ - оптика, механика, физиология зрения. Высказал гипотезу о поперечности световых колебаний,разработал также теорию цветного зрения. Исследовал деформациию сдвига, ввёл числовую характеристику упругости при растяжении и сжатии - так называемый модуль Юнга. Он впервые рассмотрел механическую работу как величину, пропорциональную энергии (термин ввёл Юнг), под которой понимал величину, пропорциональную массе и квадрату скорости тела.

Майкл Фарадей

Дата рождения 22 сентября 1791 - английский физик, химик и физико-химик, основоположник учения об электромагнитном поле, В 1832 году открыл электрохимические законы, которые легли в основу нового раздела науки - электрохимии, имеющего сегодня огромное количество технологических приложений. Фарадея увлекла проблема связи между электричеством и магнетизмом. Он поставил задачу «Превратить магнетизм в электричество» и через 10 лет нашёл решение этой проблемы.

Физики начала 19 века

Джеймс Клерк Максвелл

Дата рождения 13 июня 1831 - британский физик и математик. Заложил основы современной классической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Один из основателей кинетической теории газов, получил ряд важных результатов в молекулярной физике и термодинамике. Пионер теории цветов и теории упругости.

Дмитрий Иванович Менделеев

Дата рождения 27 января 1834- русский учёный-энциклопедист: химик, физикохимик, физик, метролог, экономист, технолог, геолог, метеоролог, педагог, воздухоплаватель, приборостроитель. Профессор Санкт-Петербургского университета; член-корреспондент по разряду «физический» Императорской Санкт-Петербургской Академии наук. Среди наиболее известных открытий - периодический закон химических элементов, один из фундаментальных законов мироздания, неотъемлемый для всего естествознания.

Антуан Анри Беккерель

Дата рождения 15 декабря 1852 - французский физик, В 1896 г. Беккерель случайно открыл радиоактивность во время работ по исследованию фосфоресценции в солях урана. В 1903 г. он получил совместно с Пьером и Марией Кюри Нобелевскую премию по физике «В знак признания его выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности».

Генрих Рудольф Герц

Дата рождения - 22 февраля 1857 - немецкий физик. Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн. Исследовал отражение, интерференцию, дифракцию и поляризацию электромагнитных волн, доказал, что свет – это разновидность электромагнитных волн. Герц впервые наблюдал и дал описание внешнего фотоэффекта.

Физики второй половины 19 века

Константин Эдуардович Циолковский

Дата рождения 5 сентября 1857- российский и советский учёный-самоучка, исследователь, школьный учитель. Один из пионеров космонавтики. Обосновал вывод уравнения реактивного движения, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Автор работ по аэродинамике, воздухоплаванию и другим наукам. Сторонник и пропагандист идей освоения космического пространства. Предлагал заселить космическое пространство с использованием орбитальных станций, выдвинул идею поездов на воздушной подушке

Александр Степанович Попов
  • Дата рождения 4 марта 1859 - русский физик и электротехник, профессор, изобретатель радио.
  • Впервые он представил своё изобретение 7 мая 1895 года на заседании Русского физико-химического общества. С 1897 года Попов проводил опыты по радиотелеграфированию на кораблях Балтийского флота. Летом 1901 года Попов модифицировал свой приёмник, поставив вместо чувствительного реле телефонные трубки, после этого фирмой Дюкрете, уже выпускавшей в 1898 году приёмники его конструкции, был налажен выпуск телефонных приёмников.
Эрнест Резерфорд

Дата рождения 30 августа 1871- британский физик. Известен как «отец» ядерной физики, создал планетарную модель атома. Открыл альфа- и бета-излучение, короткоживущий изотоп радона и множество изотопов. Объяснил на основе свойств радона радиоактивность тория, открыл и объяснил радиоактивное превращение химических элементов, создал теорию радиоактивного распада, расщепил атом азота, обнаружил протон. Доказал, что альфа-частица - ядро гелия. вывел формулу Резерфорда. Первым открыл образование новых химических элементов при распаде тяжелых химических радиоактивных элементов.

Фредерик Содди

Дата рождения 2 сентября 1877 - английский радиохимик, член Лондонского королевского общества (1910), лауреат Нобелевской премии по химии (1921). Совместно с Резерфордом предложил теорию радиоактивного распада В 1903 Резерфорд и Содди установили, что радиоактивный распад протекает по закону, описывающему ход мономолекулярной реакции. Всего им было опубликовано более 70 статей по химии.

Физики начала 20 века

Альберт Эйнштейн

Эйнштейн - автор более 300 научных работ по физике. Он разработал несколько значительных физических теорий: Специальная теория относительности (1905), Общая теория относительности, Квантовая теория фотоэффекта, Квантовая теория теплоёмкости, Квантовая статистика Бозе - Эйнштейна, Статистическая теория броуновского движения, Теория индуцированного излучения, Теория рассеяния света на термодинамических флуктуациях в среде. Эйнштейн способствовал пересмотру понимания физической сущности пространства и времени и построению новой теории гравитации. Вместе с Планком, заложил основы квантовой теории.

Отто Ган

Дата рождения 8 марта 1879 - немецкий химик, учёный-новатор в области радиохимии, открывший ядерную изомерию (Уран Z) и расщепление урана. В 1920-х годах разработал метод применения радиоизотопов в химии, включая выращивание кристаллов и использование меченых атомов в химических реакциях и создал тем самым новую область химии - прикладную радиохимию. Решительно выступал против применения ядерной энергии в военных целях. Он считал такое использование его открытия злоупотреблением и даже преступлением.

Джеймс Чедвик

Дата рождения 20 октября 1891 - английский физик, известный по открытие нейтрона, Ученик Э.Резерфорда. В 1920 году экспериментально подтвердил равенство заряда ядра порядковому номеру элемента. Изучал искусственное превращение элементов под действием альфа-частиц (совместно с Резерфордом). В 1943-1945 гг. возглавлял группу английских учёных, работавших в Лос-Аламосской лаборатории (США) над проектом атомной бомбы.

Физики второй половины 20 века

Энрико Ферми

Дата рождения 29 сентября 1901 - итало-американский физик, внёсший большой вклад в развитие современной теоретической и экспериментальной физики, один из основоположников квантовой физики. Разработал статистику частиц с полуцелым спином (фермионов). Разработал правила квантования электромагнитного поля. Создал теорию бета-распада, прототип теории слабых взаимодействий элементарных частиц. Пришёл к выводу, что нейтроны должны быть наиболее эффективным орудием для получения радиоактивных элементов. Открыл более 60 изотопов и замедление нейтронов (эффект Ферми), селективное поглощение нейтронов.

Вернер Гейзенберг

Дата рождения 5 декабря 1901 - немецкий физик-теоретик, один из создателей квантовой механики. Автор ряда фундаментальных результатов в квантовой теории: заложил основы матричной механики, сформулировал соотношение неопределённостей, применил формализм квантовой механики к проблемам ферромагнетизма, аномального эффекта Зеемана и прочим. Участвовал в развитии квантовой электродинамики (теория Гейзенберга - Паули) и квантовой теории поля, предпринимал попытки создания единой теории поля. Ведущий теоретик немецкого ядерного проекта. Изучал физику космических лучей, теорию турбулентности.

Фриц Штрассман

Дата рождения 22 февраля 1902 - немецкий химик и физик. Изучал процессы ядерного деления, свойства радиоактивных изотопов урана и тория. В 1938 совместно с О. Ганом открыл деление ядер урана при бомбардировке их нейтронами, химическими методами доказал факт деления.

Поль Адриен Морис Дирак

Дата рождения 8 августа 1902 - английский физик-теоретик, один из создателей квантовой механики. Работы Дирака посвящены квантовой физике, теории элементарных частиц, общей теории относительности. Автор трудов по квантовой механике, квантовой электродинамике и квантовой теории поля. Предложил релятивистское уравнение электрона, что объяснило спин, Ввел представление об античастицах. К другим известным результатам Дирака относятся статистическое распределение для фермионов, концепция магнитного монополя, гипотеза больших чисел, гамильтонова формулировка теории гравитации.

Дата рождения 29 июля 1904 - советский физик-теоретик. Работы относятся к ядерной физике, теории поля, синхротронному излучению, единой теории поля, теории гравитации, истории физики. Большинство работ выполнены совместно с крупнейшими физиками первой половины XX-го века. С Г. Гамовым вывел уравнение Шредингера, исходя из модели 5-мерного пространства. С Ландау рассматривал уравнение Клейна - Гордона, статистику Ферми - Дирака и геометрию Иваненко - Ландау - Кэлера. Рассматривал теорию мировых констант, предложил протон-нейтронную модель ядра

Игорь Васильевич Курчатов

Дата рождения 12 января 1903 - русский советский физик, «отец» советской атомной бомбы. Основатель и первый директор Института атомной энергии, главный научный руководитель атомной проблемы в СССР, один из основоположников использования ядерной энергии в мирных целях. Под его руководством был произведён взрыв первой советской атомной бомбы, разработана первая в мире водородная бомба и термоядерная бомба АН602 (Царь-бомба) рекордной мощности 52 000 кт. Занимался проблемой управляемого термоядерного синтеза. Руководил разработкой и строительством первой в мире атомной электростанцией.

Сергей Павлович Королев

Дата рождения 12 января 1907 - советский учёный, конструктор и организатор производства ракетно-космической техники и ракетного оружия СССР, основоположник практической космонавтики. Крупнейшая фигура XX века в области космического ракетостроения и кораблестроения. Создатель советской ракетно-космической техники, обеспечившей стратегический паритет и сделавшей СССР передовой ракетно-космической державой, ключевая фигура в освоении человеком космоса, создатель практической космонавтики. Осуществил запуск первого искусственного спутника Земли и первого космонавта Юрия Гагарина.

(1885-1962)
Физик, лауреат Нобелевской премии за 1922 год
В МИКРОМИРЕ ИНЫЕ ЗАКОНЫ

Нильс Бор родился 7 ноября 1885 года в семье известного датского физиолога. Еще ребенком, наблюдая за многочисленными физическими экспериментами, проводимыми отцом, Нильс увлекся естественными науками. С 1903 по 1908 год Нильс Бор учится в Копенгагенском университете. Выдающиеся способности юноши замечены преподавателями, так что вскоре Нильс становится помощником ассистента на кафедре физики. В 1911 году молодой ученый защищает докторскую диссертацию, посвященную электронной теории металла. Уже в этой ранней работе Нильса Бора содержится вывод о том, что представления классической физики недостаточны для объяснения электронных и атомных процессов, как и явлений электромагнитного излучения.

После защиты диссертации Нильс Бор едет на стажировку в Англию, где работает сначала в Кембриджском университете, а затем Манчестере - в лаборатории Эрнеста Резерфорда, к тому времени уже знаменитого физика. Именно в те годы Резерфорд экспериментально доказал, что внутри атома находится некое массивное тело. Экспериментатор назвал его «ядром». В опубликованной в 1912 году статье «Рассеяние альфа- и бета-частиц в веществе и структура атома» Резерфорд уподобил атом миниатюрной солнечной системе, в которой вокруг положительно заряженной «звезды»-ядра вращаются отрицательно заряженные «планеты» - электроны.

Поначалу ядерно-электронная модель атома не была принята всерьез научным миром. Ведь она шла вразрез с классическими канонами физики! Однако двадцатипятилетний Нильс Бор сразу поверил в атомную модель Резерфорда. Он понял, что исходя из этой «химерической» планетарной системы можно построить новую физику. Впоследствие она получила название «квантовая физика атома». Вот что писал Нильс Бор в своих Мемуарах: «Весной 1912 года я пришел к убеждению, что электронное строение атома Резерфорда управляется с помощью кванта действия». Рассуждал он примерно так: атом ничтожно мал, его диаметр не превышает стомиллионной доли сантиметра. При этом его частипы обладают электрическими зарядами строго определенной величины, а также определенной массой. Как, исходя из этих данных, «вывести» размер атома? Массы и заряды не позволяют получить величину, имеющую размерность длины. Значит, либо должны существовать некие, доселе неизвестные силы, действующие на расстояниях, соизмеримых с атомным радиусом, либо в расчеты должны быть введены некие константы, которые позволят вместе с зарядом и массой получить величину размерности длины. Такой константой могла стать только постоянная Планка.

1913 год. Именно в том году он опубликовал три фундаментальные работы, введя в науку свои знаменитые квантовые постулаты, определявшие строение атома, а также испускания и поглощения им электромагнитного излучения. На примере атома водорода ученый констатировал, что излучение электрона, который движется вокруг ядра, не представляет собой непрерывного спектра, а значит, не может быть описано законами классической электродинамики, согласно которым электроны вследствие своего ускорения должны были бы постепенно терять энергию и в конце концов упасть на ядро. Чтобы устранить возникшее противоречие, Бор предложил опереться на данные эксперимента, а не на классические постулаты, абсолютно бессильные, коль скоро речь заходит о столь малых заряженных объектах. Он выдвинул свои постулаты, в основе которых лежала, как уже говорилось, квантовая теория Макса Планка.

В соответствие с постулатами Бора, электрон в свободном атоме водорода вращается вокруг ядра не по произвольной орбите, а по такой траектории, прохождение которой не связано с излучением энергии. Образование линейчатого спектра, непонятного с точки зрения классической физики, объяснялось тем, что электрон, поглощая фотон, переходит на более высокую орбиту. Соответственно, при потере энергии, электрон переходит на более низкую орбиту.

Теория объясняла также потерю атомом электронов при образовании положительных ионов. Основные постулаты теории Бора были изложены в статье «О строении атомов и молекул», опубликованной 5 апреля 1913 года. Согласно этой теории:

а) электроны могут перемещаться только по строго определенным орбитам. Чем дальше находится электрон от ядра, тем слабее притяжение,
которое он испытывает, и тем проще его вырвать из атома;

б) при перемещении по одной и той же орбите электрон не излучает энергии;

в) при перескакивании с одной орбиты на другую электрон поглощает или излучает энергию: при переходе с более близкой на более дольнюю
орбиту - поглощает, так как при этом он преодолевает силу притяжения ядра, в случае обратного перехода - излучает.

Переход с одной орбиты на другую соответствует излучениям со строго определенными частотами, которые вычисляются с помощью постоянной Планка. Фотоны переносят энергию не непрерывно, а в виде квантов. Каждое тело, которому сообщается энергия (например, при нагреве), возвращает ее затем в виде излучения со строго определенной частотой, специфичной для данного вещества. Теория Бора стала подлинной революцией в физике. Она показала, что в микромире действуют законы, абсолютно непохожие на те, которыми описывается мир макрообъектов. Однако достаточно стройная модель атома Резерфорда-Бора не лишена была противоречий. Ведь новое представление о стационарных электронных орбитах опиралось на теорию Планка, тогда как расчет этих «планетарных» орбит производился по методам классической механики. Физик Генри Брэгг иронизировал на сей счет: «Мы как бы должны по понедельникам, средам и пятницам пользоваться классическими законами, а по вторникам, четвергам и субботам - квантовыми». Со временем наука пришла к выводу, что резерфордовско-боровская модель атома - лишь удобное приближение, тогда как реальный атом намного сложнее. Однако постулаты Бора не только устояли, но и легли в основу современной теоретической физики.

В 1920 году Нильс Бор становится во главе созданного им Института теоретической физики в Копенгагене, в 20-30-е годы по праву считающегося международным центром науки. Здесь ученый продолжает работу по изучению строения атома и атомного ядра. На заседании Физического общества 18 октября 1921 года он выступает с докладом «Строение атома и физические и химические свойства элементов», в котором объясняет глубинные причины периодического изменения свойств элементов. Бор связывает Периодическую систему Д. Менделеева с изменениями в строении электронных оболочек элементов. Вот как это формулируется в докладе: «Последовательность элементов распадается на различные периоды, внутри которых их химические свойства изменяются известным характерным образом. Для истолкования этой закономерности естественно предположить отчетливое распределение электронов в атоме таким образом, что расположение групп элементов в системе следует приписать постепенному образованию электронных групп в атоме по мере увеличения атомного ядра». Плодотворность предложенного датским физиком подхода вскоре была доказана фактом открытия гафния. Бор предположил, что неизвестный элемент с порядковым номером 72, хотя он и расположен в Периодической системе рядом с лантаноидами, может быть обнаружен не среди них, а вблизи циркония. Это предположение он сделал на основании того, что ряд лантаноидов заканчивается на элементе 71, электронная оболочка которого содержит максимальное число электронов - то есть полностью заполнена, из чего следует, что элемент с порядковым номером 72 относится уже к другой группе. В 1922 году Нильсу Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атомов и испускаемого ими излучения»: В своей нобелевской лекции Бор сообщил о том, что двое его сотрудников обнаружили элемент с порядковым номером 72 именно в циркониевых минералах. Так блестяще подтвердилось предсказание великого ученого. В 30-е годы областью научных интересов датского естествоиспытателя становится ядерная физика. В 1936 году он предлагает свой механизм протекания ядерных реакций, согласно которому бомбардирующая частица и ядро «простреленного» атома образуют составное ядро, в котором мгновенно перераспределяется энергия. Через ничтожно малый промежуток времени один или несколько нуклонов приобретают энергию, достаточную для того, чтобы покинуть ядро. В 1939 году Бор выдвигает капельную модель ядра. Совместно с Д. Уилером он разрабатывает количественную теорию деления урана под действием нейтронов и, благодаря своей блестящей научной интуиции, предсказывает вероятность спонтанного деления ядер.

Во время Второй мировой войны Данию оккупируют немецкие войска. Утром 29 сентября 1943 года Бор получает секретное сообщение о том, что фашисты собираются насильственно вывезти его в Германию, поскольку руководство «Третьего рейха» решило привлечь великого датчанина к реализации гитлеровского атомного проекта. Благодаря связям с движением Сопротивления, Бору и его жене удается в последнюю минуту ускользнуть от германских спецслужб. Под покровом ночи тайно они покидают родину на рыбацком судне и переправляются в Швецию. Оттуда они вскоре летят в Англию на переполненном бомбардировщике. Место для ученого нашлось только в бомбовом отсеке. Кислородный шлем оказался Бору слишком мал, и, пока самолет шел на большой высоте, физик едва не погиб от удушья. Кроме того, как впоследствии выяснилось, летчики имели приказ в «крайнем» случае открыть бомбометательный люк: ученый ни в коем случае не должен был попасть в руки врага. К счастью, все обошлось. Из Англии Бор перебирается в США, где принимает участие в работах по созданию атомной бомбы. Одним из первых великий датчанин понял, какая опасность таится в открытиях физиков-ядерщиков. В июле 1944 года он обратился к президенту США Ф. Рузвельту с меморандумом, в котором высказался за полное запрещение производства и применения атомного оружия. Сын Нильса Бора продолжил дело отца. В 1975 году Оге Бор получил Нобелевскую премию по физике «за развитие теории структуры атомного ядра».

Тим Бернерс-Ли

(р. 1955)
¶Создатель глобальной компьютерной сети
¶ВСЕМИРНЫЙ ПАУК

Он родился в Англии в семье с крепкими патриархальными традициями. Читать полностью »

(р. 1922)¶Физик, лауреат Нобелевской премии по физике за 1964 год
¶МАЗЕР И ЛАЗЕР

Среди его научных трудов есть посвященные оптическим свойствам полупроводников и сверхпроводимости,
молекулярной плазме и синхротронному излучению, космическим лучам, пульсирующим нейтронам и даже проблемам общей теории относительности. Читать полностью »

(р. 1908)¶Физик, лауреат Нобелевских премий за 1956 и 1972 гг.
¶В ПОИСКАХ ТРАНЗИСТОРНОГО ЭФФЕКТА

Будущий дважды Нобелевский лауреат родился 23 мая 1908 года в городе Мэдисон, штат Висконсин, в семье профессора анатомии. Читать полностью »

Лев Андреевич Арцимович

(1909-1973)¶Физик
¶ВСЕ ОТРИЦАЮЩИЙ ДУХ

Академик Арцимович родился 25 февраля 1909 года в Москве. Читать полностью

Николай Николаевич Андреев

(1880-1970)¶Физик¶
ЧИСТОТА ЗВУКА

Основоположник российской акустической школы родился 15 июля 1880 года. Читать полностью »

Луис Альварес

(1911-1988)¶Физик, лауреат Нобелевской премии за 1968 год¶
И САМОЛЕТЫ, И ДИНОЗАВРЫ

Луис Уолтер Альварес родился 13 июня 1911 года в Сан-Франциско в семье университетского профессора. Читать полностью »

Анатолий Петрович Александров

(1903-1994)¶Физик¶
ОТ КИЕВА ДО ЧЕРНОБЫЛЯ

Академик Александров прожил долгую, интересную жизнь. Его творческую судьбу можно было бы назвать счастливой, если бы не авария, случившаяся в 1986 году на Чернобыльской АЭС на созданном им реакторе. Читать полностью »

Макс Фон Лауэ

(1879-1960)
Физик, лауреат Нобелевской премии по физике за 1914 год
ЛУЧИ В ПЛЕНУ У КРИСТАЛЛА

Макс Теодор Феликс фон Лауэ родился 9 сентября 1879 года в Германии. Его отец в 1913 году получил потомственное дворянство и престижную приставку «фон» к фамилии. Читать полностью »

Лев Давидович Ландау

(1908-1968)
Физик, лауреат Нобелевской премии по физике за 1962 год
ВЕЛИКИЙ УПРОСТИТЕЛЬ

Его называли лучшим физиком-теоретиком своего времени, а главным его качеством коллеги считали умение предельно ясно показывать фундаментальную простоту, присущую основным явлениям природы. Читать полностью »

Мария Кюри-Склодовская

(1867-1934)
Физик, химик, лауреат Нобелевских премий за 1903 и 1911 годы
ДОБЫЧА РАДИЯ - ТА ЖЕ ПОЭЗИЯ

Одна из самых великих женщин и ученых всех времен и народов, Мария Склодовская родилась 7 ноября 1867 года в Варшаве. Читать полностью »

Пьер Кюри

(1859-1906)
Физик, лауреат Нобелевской премии за 1903 год
СВЕТ БУДУЩЕГО

Пьер Кюри родился 15 мая 1859 года. Его отец Эжен Кюри был врачом, причем хорошим, однако после разгрома Парижской коммуны, участником которой был, он не имел богатых пациентов, а потому нуждался. Читать полностью »

Игорь Васильевич Курчатов

(1903-1960)
Физик
ВОИНСТВЕННЫЙ ATOM

Выдающийся физик Игорь Курчатов родился 12 января 1903 года в небольшом поселке Сим неподалеку от Уфы. Отец его, по образованию землемер, был в то время помощником лесничего. Читать полностью »

Вильгельм Рентген

(1845-1923)
Физик, лауреат Нобелевской премии по физике за 1901 год
В СВЕТЕ ИКС-ЛУЧЕЙ

На фотопластинке проявляется контур изящной дамской руки с длинными пальцами. Снимок похож на негатив: отчетливо видны белые кости и более темные ткани вокруг них. Читать полностью »

Эрнест Резерфорд

(1871-1937)
Физик, лауреат Нобелевской премии по физике за 1908 год
ПЛАНЕТА ПО ИМЕНИ АТОМ

Эрнест Резерфорд родился 30 августа 1871 года в Новой Зеландии в семье шотландского переселенца. Отец Эрнеста был не только хозяином деревообрабатывающего предприятия, но и мастером на все руки. Читать полностью »

Александр Михайлович Прохоров

(р. 1916)
Физик, лауреат Нобелевской премии по физике за 1964 год
НА РАДИОВОЛНЕ

Русский ученый Александр Прохоров родился в Австралии. Туда забросила судьба его родителей, беглых ссыльных Михаила и Марию. Читать полностью »

Макс Планк

(1858-1947)
Физик, лауреат Нобелевской премии по физике за 1918 год
ЛЕГКИЕ ШАГИ ЭНЕРГИИ

Биографы Макса Карла Эрнста Людвига Планка утверждают, что великий физик состоял в родстве разной степени близости с философами Шеллингом и Гегелем, поэтами Шиллером и Гельдерлином. Читать полностью »

Вольфганг Паули

(1900-1958)
Физик, лауреат Нобелевской премии по физике за 1945 год
ЧЕЛОВЕК, КОТОРЫЙ НАЛАГАЛ ЗАПРЕТЫ

Биограф австро-швейцарского физика Вольфганга Эрнста Паули, автор книги «В поисках. Физики и квантовая теория» Барбара Клайн писала: «Внешне он очень напоминал Будду, но Будду, в глазах которого светился ум. В научных спорах Паули был бесподобен. Читать полностью »

Энрико Ферми

(1901-1954)

АТОМЫ У НЕГО ДОМА

Читать полностью »

Ричард Филлипс Фейнман

(1918-1988)

ВАЛЬС ЛЕТАЮЩИХ ТАРЕЛОК

Читать полностью »

Джозеф Джон Томсон

(1856-1940)

ОТЦЫ И ДЕТИ

Читать полностью »

Игорь Евгеньевич Тамм

(1895-1971)

«УРОВНИ ТАММА»

Он родился 8 июля 1895 года на самом краю России - во Владивостоке. Вскоре семья переехала на Украину, в Елисаветград (позже Кировоград), где отец Игоря Евгеньевича Читать полностью »

Энрико Ферми

(1901-1954)
Физик, лауреат Нобелевской премии по физике за 1938 год
АТОМЫ У НЕГО ДОМА

Как любой художник без запинки перечислит шедевры Рембрандта, так и рядовой физик с удовольствием расскажет о «шедеврах», автором которых является Энрико Ферми. Читать полностью »

Ричард Филлипс Фейнман

(1918-1988)
Физик, лауреат Нобелевской премии по физике за 1965 год
ВАЛЬС ЛЕТАЮЩИХ ТАРЕЛОК

Он умел заставлять время течь вспять, разделял изотопы урана, описывал сверхтекучий газ и вычислял силы, с которыми взаимодействуют элементарные частицы. Читать полностью »

Джозеф Джон Томсон

(1856-1940)
Физик, лауреат Нобелевской премии по физике за 1906 год
ОТЦЫ И ДЕТИ

Он подписывался Дж. Дж. Томсон, из-за чего коллеги дали ему прозвище Джи-Джи. Физику Джи-Джи выпало жить на водоразделе столетий. На склоне лет он так описывал начало своего пути: Читать полностью »

Игорь Евгеньевич Тамм

(1895-1971)
Физик, лауреат Нобелевской премии по физике за 1958 год
«УРОВНИ ТАММА»

Одной из основополагающих наук нашей планеты является физика и ее законы. Ежедневно мы пользуемся благами ученых физиков, которые уже много лет работают для того чтобы жизнь людей становилась комфортнее и лучше. Существование всего человечества построено на законах физики, хотя мы об этом и не задумываемся. Благодаря кому у нас в домах горит свет, мы можем летать на самолетах по небу и плавать по бескрайним морям и океанам. Об ученых посветивших себя науке мы и поговорим. Кто же самые известные физики, чьи работы изменили нашу жизнь навсегда. Великих физиков огромное множество в истории человечества. О семи из них мы и расскажем.

Альберт Эйнштейн (Швейцария) (1879-1955)


Альберт Эйнштейн один из величайших физиков человечества родился 14 марта 1879 года в немецком городе Ульм. Великого физика-теоретика можно назвать человеком мира, ему пришлось жить в тяжелое время для всего человечества во время двух мировых войн и часто переезжать из одной страны в другую.

Эйнштейн написал больше 350 работ по физике. Является создателем специальной (1905) и общей теории относительности(1916), принципа эквивалентности массы и энергии(1905). Разработал множество научных теорий: квантового фотоэффекта и квантовой теплоемкости. Вместе с Планком, разработал основы квантовой теории, представляющие основой современной физике. Эйнштейн имеет большое количество премий за свои труды в области науки. Венцом всех наград выступает Нобелевская премия, по физике полученная Альбертом в 1921 году.

Никола Тесла (Сербия) (1856-1943)


Родился известный физик-изобретатель в небольшой деревушке Смилян 10июля 1856 года. Работы Теслы намного опередили время, в которое жил ученый. Николу называют отцом современного электричества. Он сделал множество открытий, и изобретений получив более 300 патентов на свои творения во всех странах, где работал. Никола Тесла был не только физиком теоретиком, но и блестящим инженером, создававшим и испытывавшим свои изобретения.

Тесла открыл переменный ток, беспроводную передачу энергии, электричества, его работы привели к открытию рентгена, создал машину, которая вызывала колебания поверхности земли. Никола предсказывал наступление эры роботов, способных выполнять любую работу. Из-за своей экстравагантной манеры поведения не снискал признания при жизни, но без его работ сложно представить повседневную жизнь современного человека.

Исаак Ньютон (Англия) (1643-1727)


Один из отцов классической физики появился на свет 4 января 1643 года в городке Вулсторп в Великобритании. Являлся сначала участником, а впоследствии главой королевского общества Великобритании. Исаак сформировал и доказал главные законы механики. Обосновал движение планет Солнечной системы вокруг Солнца, а также наступление приливов и отливов. Ньютон создал фундамент для современной физической оптики. Из огромного списка работ великого ученого, физика, математика и астронома выделяются две работы одна из которых была написана в 1687 году и «Оптика» вышедшая из под пера в 1704 году. Верхом его работ является известный даже десятилетнему малышу закон всемирного тяготения.

Стивен Хокинг (Англия)


Самый известный физик современности появился на нашей планете 8 января 1942 года в Оксфорде. Образование Стивен Хокинг получал в Оксфорде и Кембридже, где и преподавал в дальнейшем, также работал в Канадском Институте теоретической физики. Главные работы его жизни связаны с квантовой гравитацией и космологией.

Хокинг исследовал теорию возникновения мира вследствие Большого взрыва. Разработал теорию исчезновения черных дыр, вследствие явления получившего в его честь название-излучение Хокинга. Считается основоположником квантовой космологии. Член старейшего научного общества, в которое входил еще Ньютон, Лондонского королевского общества на протяжении долгих лет, вступив в него в 1974 году, и считается одним из самых молодых членов принятых в общество. Всеми силами приобщает к науке современников с помощью своих книг и участвуя в телепередачах.

Мария Кюри-Склодовская(Польша, Франция)(1867-1934)


Самая известная женщина физик появилась на свет 7 ноября 1867 года в Польше. Окончила престижный университет Сорбонна, в котором изучала физику и химию, а впоследствии стала первой женщиной-преподователем в истории своей Альма-матер. Вместе со своим мужем Пьером и известным физиком Антуаном Анри Беккерелем изучали взаимодействие солей урана и солнечного света, вследствие экспериментов получили новое излучение, которое было названо радиоактивностью. За это открытие вместе со своими коллегами получила Нобелевскую премию по физике 1903 года. Мария состояла во множестве научных обществ по всему земному шару. Навсегда вошла в историю как первый человек, удостоившийся Нобелевской премии, по двум номинациям химии в 1911и физике.

Вильгельм Конрад Рентген(Германия) (1845-1923)


Рентген впервые увидел наш мир городе Леннеп, в Германии 27 марта 1845 года. Преподавал в Вюрцбургском университете, где 8 ноября 1985 года и сделал открытие, которое изменила жизнь всего человечества навсегда. Ему удалось открыть икс-излучение, впоследствии получившее название в честь ученого — рентгеновское. Его открытие стало толчком к появлению целого ряда новых течений в науке. Вильгельм Конрад вошел в история как первый обладатель Нобелевской премии по физике.

Андрей Дмитриевич Сахаров (СССР, Россия)


21 мая 1921 года родился будущий создатель водородной бомбы.Сахаров написал немало научных работ на тему элементарных частиц и космологии, по магнитной гидродинамике и астрофизике. Но главным его достижением является создание водородной бомбы. Сахаров был гениальным физиком в истории не только огромной страны СССР, но и мира.

Введение……………………………………………………………………..3

    Исследования микромира …………………………………………….…….4

    Исследования макро- и мегамира ……………………………………….…5

    Нобелевские премии по физике ……………………………………………7

Практическое задание ……………………………………………………...15

а) задание № 1: Таблица научных открытий …………………………......15

б) задание № 2: Основные научные итоги этапов развития науки …...…15

в) задание № 3: Вопрос – ответ к этапам развития ………………………16

г) задание № 4: Теория относительности А.Эйнштейна ………………...16

Заключение ………………………………………………………….…..…..21

Список используемой литературы ………………………………...……....22

Введение

В современной науке в основе представлений о строении мате­риального мира лежит системный подход, согласно которому лю­бой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образова­ние, включающее в себя составные части, организованные в цело­стность. Для обозначения целостности объектов в науке было вы­работано понятие системы.

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма­териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че­ловеческого восприятия и несоизмеримых с объектами повседнев­ного опыта.

Применяя системный подход, естествознание не просто выде­ляет типы материальных систем, а раскрывает их связь и соот­ношение.

В науке выделяются три уровня строения материи.

Макромир - мир макрообъектов, размерность которых со­относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километ­рах, а время - в секундах, минутах, часах, годах.

Микромир - мир предельно малых, непосредственно не на­блюдаемых микрообъектов, пространственная разномерность ко­торых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бес­конечности до 10 -24 сек.

Мегамир - мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро- и мегамиры теснейшим образом взаи­мосвязаны.

Исследования микромира

Вконце XIX- началеXXвв. физика вышла на уровень исследования микромира, для описания которого кон­цептуальные построения классической физики оказались не­пригодными.

В результате научных открытий были опровергнуты пред­ставления об атомах как о последних неделимых структурных элементах материи.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположе­ние о наличии помимо электрона и положительно заряженной частицы. Опыты английского физика Э. Резерфорда с альфа-частицами привели его к выводу о том, что в атомах существу­ют ядра - положительно заряженные микрочастицы

Кроме того, было обнаружено, что атомы одних элементов могут превращаться в атомы других в результате радиоактивно­сти, впервые открытой французским физиком А. А. Беккерелем.

Вопросы радиоактивности различных элементов изучались французскими физиками Пьером и Марией Кюри. Ими были открыты новые элементы - полоний и радий

Открытие сложной структуры атома стало крупнейшим со­бытием в физике, поскольку оказались опровергнутыми представления классической физики об атомах как твердых и неделимых структурных единицах вещества.

При переходе к исследованию микромира оказались разрушенными и представления классической физики о веществе и поле как двух качественно своеобразных видах материи. Изучая микрочастицы, ученые столкнулись с парадок­сальной, с точки зрения классической науки, ситуацией: одни и те же объекты обнаруживали как волновые, так и корпуску­лярные свойства.

Исследования макро- и мегамира

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI-XVII вв. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят" из атомов - мельчайших в мире частиц.

Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяже­ния и отталкивания. Механическая программа описания при­роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать исследование нужно с концепций классической физики.

И Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же зако­нами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (кор­пускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Философское обоснование механическому пониманию природы дал Р. Декарт с его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно, без учета чело­века-наблюдателя.

Итогом ньютоновской картины мира явился образ Все­ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Разрабатывая оптику, Л. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц - кор­пускул.

Эксперименты английского естествоиспытателя М. Фарядея итеоретические работы английского физика Дж.К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоис­пытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток, он ввел понятие "силовые ли­нии"

К концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

Материя во Вселенной представлена сконденсировавшими­ся космическими телами и диффузной материей. Диффузная материя существует в виде разобщенных атомов и молекул, а также более плотных образований - гигантских облаков пыли и газа - газово-пылевых туманностей. Значительную долю ма­терии во Вселенной, наряду с диффузными образованиями, за­нимает материя в виде излучения. Следовательно, космическое межзвездное пространство никоим образом не пусто.

На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоя­нии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих, если не у большинства других галактик, "звездная субстанция" составляет более чем 99,9% их массы.

Огромное значение имеет исследование взаимосвязи между звездами и межзвездной средой, включающие проблему непре­рывного образования звезд из конденсирующейся диффузной материи.

Нобелевские премии по физике

Жорес АЛФЁРОВ, 2000 г.Исследованиями Жореса Алфёрова фактически сформировано новое направление – физика гетероструктур, электроника и оптоэлектроника.

Луис У. АЛЬВАРЕС, 1968 г.За открытие большого числа резонансов, что стало возможно благодаря разработанной им технике с использованием водородной пузырьковой камеры и оригинальному анализу данных.

Ханнес АЛЬФВЕН, 1970 г.За фундаментальные работы и открытия в магнитной гидродинамике и плодотворные приложения их в различных областях физики плазмы. Он разделил эту премию с Луи Неелем, награжденным за вклад в теорию магнетизма.

Карл Д. АНДЕРСОН, 1936 г.За открытие позитрона. Он разделил ее с Виктором Ф. Гессом. Им удалось найти один из строительных кирпичей Вселенной – положительный электрон. Андерсону принадлежит открытие частицы, ныне известной как мюон.

Филип У. АНДЕРСОН, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Джон БАРДИН, 1956 г., 1972 г.Премия 1956 г. за исследования полупроводников и открытие транзисторного эффекта, в 1972 г. премия за создание теории сверхпроводимости, обычно называемой БКШ-теорией.

Чарлз Г. БАРКЛА, 1917 г.За открытие характеристического рентгеновского излучения элементов.

Николай БАСОВ, 1964 г.За фундаментальную работу в области квантовой электроники, которая привела к созданию генераторов и усилителей, основанных на лазерно-мазерном принципе. Б. разделил премию с Александром ПрохоровымиЧарлзом Х. Таунсом.

Анри БЕККЕРЕЛЬ, 1903 г.Беккерель удостоен премии совместно с Мари КюрииПьером Кюри. Сам Б. был особо упомянут в знак признания его выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности.

Ханс А. БЕТЕ, 1967 г.За открытия, касающиеся источников энергии звезд.

Герд БИННИНГ, 1986 г.Герд Биннинг и Рорерразделили половину премии за изобретение сканирующего туннелирующего микроскопа. Другую половину премии получилЭрнст Русказа работу над электронным микроскопом.

Николас БЛОМБЕРГЕН, 1981 г.За вклад в развитие лазерной спектроскопии Бломберген и Шавловразделили между собой половину премии. Другой половиной был награжденКай Сигбанза электронную спектроскопию с помощью рентгеновских лучей.

Феликс БЛОХ, 1952 г.За развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия.

П.М.С. БЛЭККЕТ, 1948 г.За усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и космической радиации.

Нильс БОР, 1922 г.Нильс Бор за заслуги в исследовании строения атомов и испускаемого ими излучения награжден премией.

Оге БОР, 1975 г.За открытие взаимосвязи между коллективным движением и движением отдельной частицы в атомном ядре и развитие теории строения атомного ядра, базирующейся на этой взаимосвязи.

Макс БОРН, 1954 г.За фундаментальные исследования по квантовой механике, особенно за его статистическую интерпретацию волновой функции.

Вальтер БОТЕ, 1954 г.За метод совпадений для обнаружения космических лучей и сделанные в связи с этим открытия Боте разделил премию с Максом Борном, который был награжден за вклад в квантовую механику.

Уолтер БРАТТТЕЙН, 1956 г.За исследования полупроводников и открытие транзисторного эффекта.

Фердинанд БРАУН, 1909 г.Браун и Маркони получили премию в знак признания их вклада в создание беспроволочной телеграфии.

Перси Уильямс БРИДЖМЕН, 1946 г.За изобретение прибора, позволяющего создавать сверхвысокие давления.

Луи де БРОЙЛЬ, 1929 г.За открытие волновой природы электронов.

Уильям Генри БРЭГГ, 1915 г.За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей был удостоен премии.

Уильям Лоренс БРЭГГ, 1915 г.За заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей.

Стивен ВАЙНБЕРГ, 1979 г.За вклад в объединенную теорию слабых и электромагнитных взаимодействий между элементарными частицами.

Джон X. ВАН ФЛЕК, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Ян Дидерик ВАН-ДЕР-ВААЛЬС,1910 г.За работу над уравнением состояния газов.

Эуген П. ВИГНЕР, 1963 г.За вклад в теорию атомного ядра и элементарных частиц.

Кеннет Г. ВИЛЬСОН, 1982 г.За теорию критических явлений в связи с фазовыми переходами.

Роберт В. ВИЛЬСОН, 1978 г.половину премии за открытие микроволнового реликтового излучения. Другую половину премии получил Петр Капица.

Ч.Т.Р. ВИЛЬСОН, 1927 г.За метод визуального обнаружения траекторий электрически заряженных частиц с помощью конденсации пара.

Вильгельм ВИН,1911 г.За открытия в области законов, управляющих тепловым излучением.

Деннис ГАБОР, 1971 г.За изобретение и разработку голографического метода.

Вернер ГЕЙЗЕНБЕРГ, 1932 г.За создание квантовой механики.

Марри ГЕЛЛ-МАНН, 1969 г.За открытия, связанные с классификацией элементарных частиц и их взаимодействий.

Мария ГЁППЕРТ-МАЙЕР, 1963 г.За открытие оболочечной структуры ядра, что убедительно доказало всю важность оболочечной модели для систематизации накопленного материала и предсказания новых явлений, связанных с основным состоянием и низко лежащими возбужденными состояниями ядер.

Густав ГЕРЦ, 1925 г.За открытие законов соударения электрона с атомом.

Виктор Ф. ГЕСС, 1936 г.За открытие космических лучей Гесс удостоен премии.

Шарль ГИЛЬОМ, 1920 г.В знак признания его заслуг перед точными измерениями в физике – открытия аномалий в никелевых стальных сплавах Шарль Гильом был удостоен премии. Изобрел сплав элинвар.

Доналд А. ГЛАЗЕР, 1960 г.За изобретение пузырьковой камеры.

Шелдон Л. ГЛЭШОУ, 1979 г.Новаторские теоретические идеи, за которые Глэшоу был удостоен премии, привели к объединению электромагнетизма и слабого взаимодействия.

Нильс ДАЛЕН, 1912 г.За изобретение автоматических регуляторов, использующихся в сочетании с газовыми аккумуляторами для источников света на маяках.

Айвар ДЖАЙЕВЕР, 1973 г.За экспериментальные открытия явлений туннелирования в полупроводниках и сверхпроводниках.

Брайан Д. ДЖОЗЕФСОН, 1973 г.За теоретические предсказания свойств тока, проходящего через туннельный барьер, в частности явлений, общеизвестных ныне под названием эффектов Джозефсона.

Поль А. Морис ДИРАК, 1933 г.За открытие новых продуктивных форм атомной теории.

Клинтон Дж. ДЭВИССОН, 1937 г.За экспериментальное открытие дифракции электронов на кристаллах.

Пьер Жиль де ЖЕН, 1991 г.За обнаружение того, что методы, развитые для изучения явлений упорядоченности в простых системах, могут быть обобщены на жидкие кристаллы и полимеры.

Питер ЗЕЕМАН, 1902 г.Магнитное расщепление спектральных линий, известное как эффект Зеемана, – это важный инструмент исследования природы атома, он полезен и при определении магнитных полей звезд.

Йоханнес Ханс Д. ЙЕНСЕН, 1963 г.Йоханнес Ханс Даниель Йенсен и Мария Гёпперт-Майербыли удостоены премии за открытие оболочечной структуры ядра.

Хейке КАМЕРЛИНГ-ОННЕС, 1913 г. За исследования свойств вещества при низких температурах, которые привели к производству жидкого гелия.

Петр КАПИЦА, 1978 г.За фундаментальные изобретения и открытия в области физики низких температур получил премию.

Альфред КАСТЛЕР, 1966 г.За открытие и разработку оптических методов исследования резонансов Герца в атомах.

Клаус фон КЛИТЦИНГ, 1985 г.За открытие квантового эффекта Холла.

Джон КОКРОФТ, 1951 г.За работы по трансмутации атомных ядер с помощью искусственно ускоренных атомных частиц.

Артур КОМПТОН, 1927 г.За открытие эффекта, названного его именем. Разделив рассеянные рентгеновские лучи по компонентам с соответствующими длинами волн продемонстрировал, что рентгеновские лучи ведут себя аналогично свету.

Джеймс У. КРОНИН, 1980 г.За открытие нарушений фундаментальных принципов симметрии при распаде нейтральных K -мезонов.

Леон КУПЕР, 1972 г.За создание теории сверхпроводимости, обычно называемой БКШ-теорией.

Поликарп КУШ, 1955 г.За точное определение магнитного момента электрона.

Пьер КЮРИ, 1903 г. в знак признания их совместных исследований явлений радиации.

Лев ЛАНДАУ, 1962 г.За основополагающие теории конденсированной материи, в особенности жидкого гелия.

Макс фон ЛАУЭ, 1914 г.За открытие дифракции рентгеновских лучей на кристаллах, которое Эйнштейн назвал «одним из наиболее красивых в физике».

Филипп фон ЛЕНАРД, 1905 г.За работы по катодным лучам.

Цзундао ЛИ, 1957 г.За проницательное исследование так называемых законов сохранения.

Габриель ЛИПМАН, 1908 г.Габриель Липман продемонстрировал метод получения невыцветающих цветных фотографий. За создание метода фотографического воспроизведения цветов на основе явления интерференции.

Хендрик ЛОРЕНЦ, 1902 г.Хендрик Лоренц первым выдвинул гипотезу о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов.

Эрнест O. ЛОУРЕНС, 1939 г.За изобретение и создание циклотрона, за достигнутые с его помощью результаты, особенно получение искусственных радиоактивных элементов.

Уиллис Ю. ЛЭМБ, 1955 г.За открытия, связанные с тонкой структурой спектра водорода.

Альберт А. МАЙКЕЛЬСОН, 1907 г.Он измерил скорость света с точностью, невиданной ранее, пользуясь приборами, обошедшимися немногим дороже десяти долларов.

Гульельмо МАРКОНИ, 1909 г.Гулельмо Маркони передал первый беспроволочный сигнал через Атлантику с запада на восток, открыл первую трансатлантическую службу беспроволочной связи.

Симон ван дер МЕР, 1984 г.Симон ван дер Мер за решающий вклад в большой проект, осуществление которого привело к открытию полевых частиц W и Z , переносчиков слабого взаимодействия, удостоен премии.

Рудольф Л. МЁССБАУЭР, 1961 г.Явление упругого ядерного резонансного поглощения гамма-излучения ныне носит название эффекта Мёссбауэра и позволяет получить информацию о магнитных и электрических свойствах ядер и окружающих их электронов.

Роберт МИЛЛИКЕН, 1923 г.За эксперименты по определению элементарного электрического заряда и фотоэлектрическому эффекту он был удостоен премии.

Невилл МОТТ, 1977 г.За фундаментальные теоретические исследования электронной структуры магнитных и неупорядоченных систем.

Бенжамин Р. МОТТЕЛЬСОН, 1975 г.За открытие связи между коллективным движением и движением одной частицы в атомных ядрах и создание на основе этой связи теории строения атомного ядра был удостоен премии.

Луи НЕЕЛЬ, 1970 г.Работа Луи Нееля по палеомагнетизму помогла объяснить «магнитную память» скальных пород в процессе изменения магнитного поля Земли и решающим образом способствовала подтверждению теории дрейфа континентов и теории тектонических плит.

Вольфганг ПАУЛИ, 1945 г.За открытие принципа запрета Паули удостоен премии.

Сесил Ф. ПАУЭЛЛ, 1950 г.За разработку фотографического метода исследования ядерных процессов и открытие мезонов, осуществленное с помощью этого метода.

Арно А. ПЕНЗИАС, 1978 г.За открытие космического микроволнового фонового излучения.

Жан ПЕРРЕН, 1926 г.За работу по дискретной природе материи и в особенности за открытие седиментационного равновесия.

Эдуард М. ПЁРСЕЛЛ, 1952 г.За создание новых точных методов ядерных магнитных измерений.

Макс ПЛАНК, 1918 г.За открытие квантов энергии Макс Планк удостоен премии, его вклад в современную физику не исчерпывается открытием кванта и постоянной.

Александр ПРОХОРОВ, 1964 г.За фундаментальные работы в области квантовой электроники.

Изидор Айзек РАБИ, 1944 г.За резонансный метод измерений магнитных свойств атомных ядер.

Мартин РАЙЛ, 1974 г.За новаторские исследования в радиоастрофизике.

Венката РАМАН, 1930 г.За работы по рассеянию света и за открытие эффекта.

Джеймс РЕЙНУОТЕР, 1975 г.За открытие связи между коллективным движением и движением частиц в атомных ядрах.

Вильгельм РЕНТГЕН, 1901 г.в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей.

Бертон РИХТЕР, 1976 г.За новаторские работы по открытию тяжелой элементарной частицы нового типа.

Оуэн У. РИЧАРДСОН, 1928 г.За работы по термионным исследованиям, и особенно за открытие закона, носящего его имя.

Гейнрих РОРЕР, 1986 г.За создание сканирующего туннелирующего микроскопа Гейнрих Рорер и Герд Биннигбыли удостоены половины премии.

Карло РУББИА, 1984 г.за решающий вклад в большой проект, который привел к открытию квантов поля W - и Z -частиц, переносчиков слабого взаимодействия.

Эрнст РУСКА, 1986 г.За фундаментальные работы по электронной оптике и создание первого электронного микроскопа Эрнст Руска был награжден премией.

Абдус САЛАМ, 1979 г.Новые теоретические идеи, за которые Салам, Шелдон Л. ГлэшоуиСтивен Вайнбергбыли удостоены Нобелевской премии, привели к построению теории, объединившей электромагнетизм и слабое взаимодействие.

Эмилио СЕГРЕ, 1959 г.За открытие антипротона.

Кай СИГБАН, 1981 г.За вклад в развитие электронной спектроскопии высокого разрешения.

Манне СИГБАН, 1924 г.За открытия и исследования в области рентгеновской спектроскопии.

Мари СКЛОДОВСКАЯ-КЮРИ, 1903 г., 1911 г.в знак признания совместных исследований явлений радиации, открытых профессором Анри Беккерелем. Вторую премию она получила за открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента.

Джон У. CTPETT, лорд Рэлей, 1904 г.За исследования плотностей наиболее распространенных газов и за открытие аргона в ходе этих исследований.

Игорь ТАММ, 1958 г.За открытие и истолкование эффекта Черенкова.

Чарлз Х. ТАУНС, 1964 г.Фундаментальная работа Таунса в области квантовой электроники привела к созданию осцилляторов и усилителей.

Сэмюэл Ч. Ч. ТИНГ, 1976 г.За изыскательскую работу по открытию тяжелой элементарной частицы нового типа.

Синъитиро ТОМОНАГА, 1965 г.За изобретение математической процедуры перенормировки для исключения бесконечных масс и зарядов.

Дж. Дж. ТОМСОН, 1906 г.в знак признания заслуг в области теоретических и экспериментальных исследований проводимости электричества в газах.

Дж. П. ТОМСОН, 1937 г.Джордж Паджет Томсон и Клинтон Дж Дэвиссонразделили премию за экспериментальное открытие дифракции электронов на кристаллах.

Эрнест УОЛТОН, 1951 г.За исследовательскую работу по превращению атомных ядер с помощью искусственно ускоряемых атомных частиц.

Уильям ФАУЛЕР, 1983 г.За теоретическое и экспериментальное исследование ядерных реакций, имеющих важное значение для образования химических элементов.

Ричард Ф. ФЕЙНМАН, 1965 г.За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц.

Энрико ФЕРМИ, 1938 г.За доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами.

Вал Л. ФИТЧ, 1980 г.За открытие нарушений фундаментальных принципов в распаде нейтральных K -мезонов.

Джеймс ФРАНК, 1925 г.За открытие законов соударений электронов с атомами.

Илья ФРАНК, 1958 г.Открытие и истолкование эффекта Черенковапослужило основанием для присуждения премии русскому учёному Илье Франку.

Роберт ХОФСТЕДТЕР, 1961 г.За основополагающие исследования по рассеянию электронов на атомных ядрах и связанных с ними открытий в области структуры нуклонов.

Энтони ХЬЮИШ, 1974 г.За пионерские исследования в области радиофизики.

Фриц ЦЕРНИКЕ, 1953 г.За обоснование фазово-контрастного метода, особенно за изобретение фазово-контрастного микроскопа. Премия за вклад в классическую физику.

Субрахманьян ЧАНДРАСЕКАР, 1983 г.За теоретические исследования физических процессов, играющих важную роль в строении и эволюции звезд был удостоен премии.

Джеймс ЧЕДВИК, 1935 г.За открытие нейтрона.

Оуэн ЧЕМБЕРЛЕН, 1959 г.За открытие антипротона.

Павел ЧЕРЕНКОВ, 1958 г.Черенков обнаружил, что гамма-лучи, испускаемые радием, дают слабое голубое свечение, и убедительно показал, что свечение представляет собой нечто экстраординарное.

Артур Л. ШАВЛОВ, 1981 г.За вклад в развитие лазерной спектроскопии.

Джулиус С. ШВИНГЕР, 1965 г.Выдающиеся достижения в теоретической физике, за которые ему была присуждена премия, закладывались, когда он проявил интерес к фундаментальной природе материи.

Уильям ШОКЛИ, 1956 г.За исследования полупроводников и открытие транзисторного эффекта был удостоен премии.

Эрвин ШРЕДИНГЕР, 1933 г.Открытие новых продуктивных форм атомной теории.

Джон ШРИФФЕР, 1972 г.За созданную теорию сверхпроводимости, обычно называемую теорией БКШ.