Погружение свай дизель молотом. Свайный дизель-молот. Экологические и внешние преимущества при работе с гидромолотом

С предприятий стройиндустрии или с баз комплектации строительных организаций железобетонные и деревянные сваи, стальные трубы и шпунтовые сваи доставляют к месту работ в подготовленном виде.

Сваи погружают ударом, вибрацией, вдавливанием, завинчиванием, с использованием подмыва и электроосмоса, а также комбинациями этих методов. Эффективность применения того или иного метода зависит в основном от фунтовых условий.

Ударный метод

Метод основан на использовании энергии удара (ударной нафузки), под действием которой свая нижней заостренной частью внедряется в фунт. По мере пофужения она смещает частицы фунта в стороны, частично вниз, частично вверх (на дневную поверхность). В результате пофужения свая вытесняет объем фунта, практически равный объему ее пофуженной части, и таким образом дополнительно уплотняет фунтовое основание. Зона заметного уплотнения фунта вокруг сваи распространяется в плоскости, нормальной к продольной оси сваи, на расстояние, равное 2... 3 диаметрам сваи.

Ударную нафузку на оголовок сваи создают специальными механизмами - молотами самых разных типов, основными из которых являются дизельные.

На строительных площадках применяют штанговые и трубчатые дизель-молоты.

Ударная часть штанговых дизель-молотов - подвижный цилиндр, открытый снизу и перемещающийся в направляющих штангах. При падении цилиндра на неподвижный поршеньв камере сгорания смеси энергия подбрасывает цилиндр вверх, после чего происходит новый удар и цикл повторяется.

В трубчатых дизель-молотах неподвижный цилиндр, имеющий шабот (пяту), является направляющей конструкцией. Ударная часть молота - подвижный поршень с головкой. Распыление топлива и воспламенение смеси происходит при ударе головки поршня по поверхности сферической впадины цилиндра, куда подается топливо. Число ударов в 1 мин у штанговых дизель-молотов 50...60, у трубчатых - 47.. .55.

Основной показатель, характеризующий погружающую способность молота - энергия одного удара. Последняязависит от веса и высоты падения ударной части, а также энергии сгорания топлива. Количественно значения энергии удара (кДж) могут быть определены по следующим выражениям:

для штанговых молотов

для трубчатых молотов

где Q - вес ударной части молота, Н, h - высота падения ударной части молота, м.

Для конкретных условий строительства молот подбирают по необходимой номинальной энергии одного удара и коэффициенту применимости молотов.

Необходимая номинальная энергия удара

По полученному значению Ен подбирают молот (по соответствующим справочникам), а затем его проверяют по коэффициенту применимости молота к, который определяют из отношения веса молота и сваи к энергии удара, т. е.

K = (Q1 + q) / Eн,

где Q - собственный вес молота, Н, q - вес сваи (включая вес наголовника и подбабка), Н.

Значение к колеблется от 3,5 до 6 (в зависимости от материала сваи и типа молота). Например, для забивки железобетонных свайштанговым дизель-молотом к = 5, деревянных свай к = 3,5, а трубчатым - соответственно к = 6 и Л = 5.

В комплект к молоту входит, как правило, наголовник, который необходим для закрепления сваи в направляющих сваебойной установки, предохранения головы сваи от разрушения ударами молота и равномерного распределения удара по площади сваи.

Внутренняя полость наголовника должна соответствовать очертанию и размерам головы сваи.

Для забивки свай с целью удержания в рабочем положении молота, подъема и установки сваи в заданном положении применяют специальные подъемные устройства - копры. Основная часть копра - его стрела, вдоль которой устанавливается перед погружением и опускается по мере его забивки молот. Наклонные сваи погружают копрами с наклоняющейся стрелой. Копры бывают на рельсовом ходу (универсальные металлические башенного типа) и самоходные - на базе кранов, тракторов, автомашин и экскаваторов.

Универсальные копры имеют значительную собственную массу (вместе с лебедкой - до 20 т). Монтаж и демонтаж этих копров и устройство для них рельсовых путей - весьма трудоемкие процессы, поэтому их применяют для забивки свай длиной более 12 м при большом объеме свайных работ на объекте.

Наиболее распространены в промышленном и гражданском строительстве сваи длиной 6...10 м, которые забивают с помощью самоходных сваебойных установок. Эти сваебойные установки ма-невренны и имеют устройства, механизирующие процесс подтаскивания и подъема сваи, установку головы сваи в наголовник, а также выравнивание стрелы.

Забивку свай начинают с медленного опускания молота на наголовник после установки сваи на фунт и ее выверки. Под действием веса молота свая погружается в фунт. Чтобы обеспечить правильное направление сваи, первые удары производят с офани-чением энергии удара. Затем энергию удара молота постепенно увеличивают до максимальной. От каждого удара свая пофужается на определенную величину, которая уменьшается по мере углубления. В дальнейшем наступает момент, когда после каждого залога свая пофужается на одну и ту же Величину, называемую отказом.

Сваи забивают до достижения расчетного отказа, указанного в проекте. Измерение отказов следует производить с точностью до 1 мм. Отказ принято находить как среднюю величину после замера погружения сваи от серии ударов, называемой залогом. При забивке свай паровоздушными молотами одиночного действия или дизель-молотами залог принимают равным 10 ударам, а при забивке молотами двойного действия - число ударов за 1...2 мин.

Если средний отказ в трех последовательных залогах не превышает расчетного, то процесс забивки сваи считают законченным.

Сваи, не давшие контрольного отказа, после перерыва (продолжительностью 3...4 дн) подвергают контрольной добивке. Если глубина погружения сваи не достигла 85% проектной, а на протяжении трех последовательных залогов получен расчетный отказ, то необходимо выяснить причины этого явления и согласовать с проектной организацией порядок дальнейшего ведения свайных работ.

Вибрационный метод.

Метод основан на значительном уменьшении при вибрации коэффициента внутреннего трения в грунте и сил трения по боковой поверхности свай. Благодаря этому при вибрировании для погружения свай требуется усилий иногда в десятки раз меньше, чем при забивке. При этом наблюдается также частичное уплотнение грунта (виброуплотнение). Зона уплотнения составляет 1,5...3 диаметра сваи (в зависимости от вида грунта и его плотности).

При вибрационном методе сваю погружают с помощью специальных механизмов - вибропогружателей. Вибропогружатель, представляющий собой электромеханическую машину вибрационного действия, подвешивают к мачте сваепогружающей установки и соединяют со сваей наголовником.

Действие вибропогружателя основано на принципе, при котором вызываемые дебалансами вибратора горизонтальные центробежные силы взаимно ликвидируются, в то время как вертикальные суммируются.

Амплитуда колебаний и масса вибросистемы (вибропогружатель, наголовник и свая) должны обеспечить разрушение структуры грунта с необратимыми деформациями.

При выборе низкочастотных погружателей (420 кол/мин), применяемых при погружении тяжелых железобетонных свай и оболочек (трубчатых свай диаметром 1000 мм и более), необходимо, чтобы момент эксцентриков превышал вес вибросистемы не менее чем в 7 раз для легких грунтов и в 11 раз для средних и тяжелых фунтов.

При вибрационном погружении в глину или тяжелый суглинок под нижним концом сваи образуется перемятая глинистая подушка, которая вызывает значительное (до 40%) снижение несущей способности сваи. Чтобы устранить возникновение этого явления, сваю погружают на заключительном отрезке длиной 15...20 см ударным методом.

Для погружения легких (массой до 3 т) свай и металлического шпунта в грунты, не оказывающие большого лобового сопротивления под острием сваи, применяют высокочастотные (1500 колебаний в 1 мин и более) вибропогружатели с подрессоренной пригрузкой, которые состоят из вибратора и присоединенного к нему с помощью системы пружин дополнительного груза и приводного электродвигателя..

Вибрационный метод наиболее эффективен при несвязных во-донасыщенных фунтах. Применение вибрационного метода для пофужения свай в маловлажные плотные фунты возможно лишь при устройстве лидирующих скважин, т. е. при предварительном выполнении другого процесса, требующего буровых механизмов.

Более универсальным является виброударный способ пофуже-ния свай с помощью вибромолотов.

Наиболее распространенные пружинные вибромолоты работают следующим образом. Вибровозбудитель при вращении валов с дебалансами в противоположных направлениях совершает периодические колебания. Когда зазор между ударником вибровозбудителя и сваей меньше амплитуды колебаний вибровозбудителя, ударник периодически ударяет по наковальне наголовника сваи.

Вибромолоты могут самонастраиваться, т. е. увеличивать энергию удара с повышением сопротивления фунта пофужению свай.

Масса ударной части (вибровозбудителя) вибромолота применительно к пофужению железобетонных свай должна быть не менее 50% от массы сваи и составлять 650...1350 кг.

В практике строительства применяют также метод, основанный на комбинированном воздействии вибрации (или вибрации с ударом) и статического пригруза. Вибровдавливающая установка состоит из двух рам. На задней раме находятся электрогенератор, работающий от тракторного двигателя, и двухбарабанная лебедка, на передней раме - направляющая стрела с вибропогружателем и блоки, через которые проходит к вибропогружателю вдавливающий канат от лебедки. Когда вибровдавливающая установка займет рабочее положение (крюк подвески вибропогружателя должен находиться над местом погружения сваи), вибропогружатель опускают вниз, наголовником соединяют со сваей и поднимают в верхнее положение, а сваю устанавливают на место ее забивки. После включения вибропогружателя и лебедки свая погружается за счет собственного веса, веса вибропогружателя и части веса трактора, передаваемого вдавливающим канатом через вибропогружатель на сваю. Одновременно на сваю действует вибрация, создаваемая низкочастотным погружателем с подрессоренной плитой.

Метод вибровдавливания не требует устройства каких-либо путей для рабочих передвижек, исключает разрушение свай и особенно эффективен при погружении свай длиной до 6 м.

Погружение свай завинчиванием

Метод основан на завинчивании стальных и железобетонных свай со стальныминаконечниками с помощью установок, смонтированных на базе автомобилей или автомобильных тягачей.

Метод - применяют главным образом при устройстве фундаментов под мачты линий электропередачи, радиосвязи и других сооружений, где в достаточной мере могут быть использованы несущая способность винтовых свай и их сопротивление выдергиванию. Эти установки имеют рабочий орган, четыре гидравлические выносные опоры, привод вращения и наклона рабочего органа, гидросистему, пульт управления и вспомогательное оборудование.

Конструкция рабочего органа позволяет выполнять следующие операции: втягиватьвинтовую сваю внутрь трубы рабочего органа (предварительно на сваю надевают инвентарную металлическую оболочку), обеспечивать заданный угол погружения сваи в пределах 0...450 от вертикали, погружать сваю в грунт путем вращения с одновременным использованием осевого усилия, при необходимости вывертывать сваю из грунта. Вращение рабочего органа и его наклон осуществляют от коробки отбора мощности автомобиля через соответствующие редукторы.

Рабочие операции при погружении сваи методом завинчивания аналогичны операциям, выполняемым при погружении свай методом забивки или вибропогружением. Только вместо установки и снятия наголовника здесь надевают и снимают оболочки.

Методы ускорения процесса погружения свай

Такие методы основаны либо на энергии давления водяной струи (подмыв грунта), либо на использовании эффекта электроосмоса.

Подмывом грунт разрыхляют и частично вымывают струями воды, вытекающими под давлением из нескольких трубок диаметром 38... 62 мм, укрепленных на свае. При этом сопротивление фунта у острия сваи снижается, а поднимающаяся вдоль стволавода размывает грунт, уменьшая тем самым трение по боковым поверхностям сваи. Расположение подмывных трубок может быть боковым, когда две или четыре под-мывные трубки с наконечниками находятся по бокам сваи, и центральным, когда один одно- или многоструйный наконечник размещен по центру погружаемой сваи. При боковом подмыве (по сравнению с центральным) создаются более благоприятные условия для уменьшения сил трения по боковой поверхности свай. При боковом расположении подмывные трубки крепят таким образом, чтобы наконечники находились у свай на 30...40 см выше острия.

Для подмыва грунта воду в трубки подают под давлением не менее 0,5 МПа. Приподмыве нарушается сцепление между частицами грунта под подошвой и частично по боковой поверхности свай, что может привести к снижению несущей способности сваи. Поэтому сваи на последнем метре или двух метрах погружают без подмыва здбивкой.

Применение подмыва не допускается, если имеется угроза просадки близлежащих сооружений, а также при наличии просадочных грунтов.

Погружение свай с использованием электроосмоса применяют при наличии водонасыщенных плотных глинистых грунтов, моренных суглинков и глин. Для практической реализации метода погруженную сваю присоединяют к положительному полюсу (аноду) источника тока, а соседнюю с ней погружаемую - отрицательному полюсу (катоду) того же источника тока. При включении тока вокруг сваи (анод) снижается влажность фунта, а у пофужаемой сваи (катод), наоборот, повышается. После прекращения подачи тока происходит восстановление первоначального состояния фунтовых вод и несущая способность свай, являющихся катодами, возрастает.

Дополнительные операции при пофужении железобетонных свай с использованием электроосмоса связаны с оснащением свай полосами стали - электродами, площадь которых занимает 20...25% боковой поверхности свай. Эта операция отпадает при пофужении металлических свай методом завинчивания.

Применение метода электроосмоса, позволяет на 25...40% ускорить процесс пофужения сваи, а также уменьшить нафузки, необходимые для пофужения сваи.

Погружение свай в мерзлые грунты

При пофужении свай зимой в сезоннопромерзающие фунты приходится выполнять дополнительные операции или отдельные процессы, увеличивающие трудоемкость и продолжительность свайных работ. Без дополнительных операций, но с некоторым снижением производительности установок удается обходиться при пофужении свай мощными молотами и вибромолотами, если глубина промерзания не превышает 0,7 м. В остальных случаях следует создавать условия, близкие к летним. Для этого необходимо предотвращать промерзание фунта путем заблаговременного утепления мест забивки свай подручными материалами (опилки, солома и т. п.). В этих же целях мерзлый грунт разрушают на месте забивки свай механическими способами, устраивают лидирующие скважины бурильными машинами и виброударными установками или нарезают прорези по рядам будущих свай с помощью баровых машин, оттаивают слой мерзлого фунта (все эти процессы выполняют методами, принятыми при разработке мерзлых фунтов). Сам процесс пофужения свай идентичен процессам, принятым для летних условий.

Методы погружения свай в вечномерзлые грунты характеризуются технологическими особенностями, обусловленными физико-механическими свойствами мерзлых грунтов, которые в ненарушенном состоянии имеют высокую несущую способность. Поэтому в этих условиях при выполнении свайных работ необходимо максимально сохранять мерзлые грунты в их естественном состоянии, а на участках, где в процессе погружения свай нарушается структура грунта, следует восстанавливать свойства этих грунтов. Вмерзание свай, или,иначе говоря, смерзание поверхности сваи с грунтом, приводит к тому, что они приобретают высокую несущую способность. Это явление может быть эффективно использовано при погружении свай в твердомерзлые грунты, условно относимые к низкотемпературным. У этих фунтов среднегодовая температура на глубине 5... 10 м не выше - 0,6°С для супесей - 1°С для суглинков и - 5°С для глин.

Пофужают сваи в твердомерзлые фунты главным образом двумя методами: в оттаявший фунт или в пробуренные скважины, диаметр которых превышает наибольший размер поперечного сечения сваи. При пофужении свай в оттаявший грунт вначале его оттаивают и затем пофужают сваи в образовавшуюся в мерзлом фунте полость разжиженного фунта. Грунт оттаивают с помощью паровой иглы, перфорированной в нижнем конце. Под действием пара (давлением 0,4...0,8 МПа), выходящего у острия иглы, фунт разжижают до текучего состояния и в него пофужают сваю до проектной глубины.

В фунтах с небольшим количеством льда можно получить полость нужных размеров в короткое время (1... 3 ч), а в фунтах с большой степенью насыщения льдом этот процесс происходит в течение 6...8 ч. Скорость пофужения иглы определяют с таким расчетом, чтобы диамеф протаянной полости в 2... 3 раза превышал наибольший размер сваи в поперечном сечении. Через некоторое время после пофужения сваи происходит вмерзание и она, будучикак бы заделанной в толщу вечномерзлого грунта, приобретает необходимую несущую способность.

Метод гюгружения сваи в пробуренные скважины предусматривает такую последовательность процессов и операций: бурение скважины, заполнение скважины песчано-глинистым раствором до отметки, при которой объем раствора с некоторым избытком достаточен для заполнения зазоров между стенками скважины сваи после ее погружения, погружение сваи, сопровождающееся выжиманием раствора, извлечение обсадной трубы.

В пластично-мерзлые высокотемпературные (сосреднегодовой температурой не ниже - ГС) фунты сваи пофужают забивным или бурозабивным методом. Методы пофужения в оттаянный фунт и в скважины большего сечения, чем сечение свай, в условиях высокотемпературных фунтов малопригодны из-за того, что вмерзание сваи происходит весьма медленно. Забивать сваи можно в пластично-мерзлые пылеватые суглинки и песчаные фунты, не содержащие включений, и только в период сезонного оттаивания, так как зимой фунты деятельного слоя охлаждаются до -5... -10°С и становятся твердомерзлыми. Поэтому область применения бурозабивного метода значительно шире.

Бурозабивным методом сваи пофужают в два этапа. На первом этапе пробуривают лидирующую скважину, диаметр которой принимается на 1...2 см меньше стороны сваи. На втором этапе пофужают сваю с помощью вибромолота или дизель-молота. При этом фунт отжимается от углов сваи к середине ее стенок. Грунт оттаивает за счет тепловой энергии, трансформированной из механической, развиваемой молотом, и частичного выжимания фунта из скважины. Достаточно оттаять тонкому слою фунта и температура в зоне, прилегающей к свае, повысится на незначительную величину, а процесс вмерзания сваи в фунт произойдет за короткое время. Применение лидирующих скважин позволяет повысить точность установки сваи, обеспечить пофужение ее на проектную глубину, устранить случаи поломки сваи при попадании под острие валунов и др.

Последовательность погружения свай

От расположения свай в свайном поле и параметров сваепогружающего оборудования зависит порядок погружения свай. Кроме того, следует учитывать последующие процессы по устройству свайного ростверка.

Наибольшее распространение имеет рядовая система погружения свай, применяемая при прямолинейном расположении их отдельными рядами или кустами.

Спиральная система предусматривает погружение свайконцентрическими рядами от краев к центру свайного поля, она позволяет в ряде случаев получить минимальную протяженность пути сваепогружающей установки. Если расстояние между центрами свай менее пяти их диаметров (или соответственно размеров сторон поперечного сечения), то грунт в середине свайного поля может уплотняться, что усложняет процесс. При этом бывают случаи, когда невозможно погрузить сваи, расположенные в этой зоне. В этом случае погружать сваи надо от центра к краям свайного поля.

При больших расстояниях между сваями порядок погружения определяется технологическими соображениями, прежде всего использованием эффективного оборудования. Так, у некоторых копров башенного типа мачты опираются на выдвижные рамы, расположенные над платформами-тележками и смещающиеся примерно на 1 м. Этими копрами можно забивать сваи двух рядов с одной стоянки копра. Для сооружения подземной части жилых домов применяют специальные краны, оснащенные навесным копровым оборудованием, двухбарабанной лебедкой для подъема молота и сваи и дизель-молотом. Такие краны могут забивать сваи длиной 8 м, перемещаясь по рельсовому пути, уложенному примерно на нулевой отметке вдоль бровок котлована строящегося здания.

При устройстве свайных фундаментов жилых и промышленных зданий большой протяженности весьма эффективно забивать сваи с помощью мостовой сваебойной установки. Эта установка представляет собой передвижной мост, по которому перемещается тележка с копром. Сваи длиной 8... 12 м забивают дизель-молотом. Так как мачта копра опускается ниже пола рабочей площадки копра,то можно забивать сваи ниже рамы моста. Данная установка является своего рода координатным устройством, облегчающим выполнение разбивки мест погружения сваи, при этом можно устанавливать сваи с большой степенью точности. Расположение сваи в зоне действия мостовой установки позволяет сократить продолжительность операций по подтаскиванию сваи, что, в свою очередь, повышает производительность всего процесса.

Устройство шпунтовых ограждений из металлических и деревянныхшпунтов начинают с пофужения маячных свай, к которым в 2... 3 яруса крепят схватки, служащие направляющими при забивке шпунта.

При пофужении свай зимой с использованием стержневых электронафевателей для оттаивания мерзлого фунта район забивки свай разбивают на фи участка-захватки: на первом - бурят скважины, на втором - скважины уже заранее пробурены и утеплены сверху, на третьем - сваи пофужают. Интервал между отофевом скважины и пофужением в нее сваи не должен превышать одной смены. Примерно так же с разбивкой на захватки устанавливают порядок пофужения свай, если усфойство ростверков начинают до завершения пофужения всех свай под здание или сооружение.

Выбор методов погружения свай и сваепогружающего оборудования

При погружении свай основными факторами, определяющими выбор метода, являются физико-механические свойства грунта, объем свайных работ, вид свай, глубина погружения, производительность применяемых сваепогружающих установок и свайных погружателей.

Объемы работ чаще всего измеряют числом свай или метрами суммарной длины погруженной части свай, а шпунтового ряда - метрами длины шпунтового ряда той или иной глубины погружения. В соответствии с этим производительность оборудования измеряют за час или чаще за смену.

Усредненные данные о нормах времени на погружение свай различными установками для разных типов молотов и погружателей, а также составы рабочих звеньев приведены в ЕНиРах. Однако многообразие и сложность действующих факторов в большинстве случаев требуют установить общие зависимости для определенной скорости и продолжительности погружения свай в грунт для конкретных условий. Для этого выполняют пробное погружение свай в пределах площади свайного поля тем же оборудованием, которое предполагается использовать. По данным пробного погружения не менее чем пяти свай в различных местах участка устанавливают среднюю продолжительность погружения и расчетную производительность сваепогружающего оборудования для конкретных условий каждого объекта.

Тип выбираемой сваепогружающей установки во многом зависит от объема свайных работ. Это объясняется тем, что для копров башенного типа, мостовых сваебойных и некоторых других установок необходимы рельсовые пути, которые целесообразно укладывать только при большом числе погружаемых свай. Кроме того, монтаж копра является более трудоемким, чем подготовка мобильной установки.

Число машин, необходимых для выполнения свайных работ, определяют, исходя из эксплуатационной сменной производительности сваепогружающей установки:

Псм = 480 kв / (t0 + tв),

где kв - коэффициент использования установки по времени (можно принимать 0,9), 480 - продолжительность смены, мин, t0 - выполнение основной операции погружения свай, мин, tв - продолжительность вспомогательных операций, включая перемещение установки, мин.

Зная Псм и установленный срок производства свайных работ, получим необходимое число сваепогружающих установок:

Строительство воздушных линий

Для выполнения свайных работ применяется оборудование, которое можно подразделить на основное и вспомогательное. К основному оборудованию относятся: копры и молоты для погружения свай заводского изготовления; буровые станки для изготовления буронабивных свай; крановое оборудование, используемое для навесных копровых стрел или буровых рабочих органов; автобетоносмесители большой вместимости, приготовляющие и доставляющие литую бетонную смесь для буронабивных свай. К вспомогательному оборудованию относятся машины и механизмы общестроительного, назначения (автотранспортные средства, машины для земляных работ, погрузочно-разгрузочные средства, компрессоры, оборудование для сварочных работ и т.п.). К вспомогательному оборудованию можно отнести также свайные наголовники, инвентарные хомуты для срезки голов свай, отбойные молотки, бетонолитные трубы, бункера и бадьи для приемки и укладки бетонной смеси.

Для контроля качества выполнения свайных работ используются приборы и оборудование, к которым относятся геодезические инструменты, отказомеры, гаммаплотномеры, приборы для неразрушающих способов определения марок бетона свай и ростверков, фактических величин защитного слоя бетона и т.п.

8.5.1. Погружение свай заводского изготовления

Сваи заводского изготовления погружаются в грунт забивкой с помощью молотов, вибропогружением. с помощью вибропогружателей, вдавливанием (или вибровдавливанием) с помощью специальных агрегатов.

Наиболее широкое применение на объектах промышленного и гражданского строительства получил способ забивки, а на объектах транспортного и гидротехнического строительства — способ вибропогружения.

Существует два метода погружения свай: с помощью копров, когда молот (или вибропогружатель) закрепляется в направляющих копровой стрелы, служащей для удерживания сваи в заданном (вертикальном или наклонном) положении в течение всего периода погружения; бескопровый, когда молот (или вибропогружатель), подвешенный на крюке крана, устанавливается на голову сваи, которая удерживается в заданном положении инвентарным металлическим или деревянным кондуктором. Последний метод применяется главным образом для погружения свай и свай-оболочек в транспортном и гидротехническом строительстве.

По конструктивным особенностям копры подразделяются на рельсовые, самоходные и навесные. Технические характеристики копров приведены в табл. 8.27 и 8.28.

Рельсовые копры применяются, как правило, при погружении свай большой длины (до 20 м) и массы (до 8 т), а также в тех случаях, когда площадка строительства сложена от поверхности слабыми грунтами и давление на грунты дна котлована не может быть более 0,05 МПа.

Самоходные копры на базе тракторов и трубоукладчиков применяются главным образом в случаях, когда длина погружаемых свай массой до 1 т не превышает 12 м, а свайные фундаменты спроектированы в виде лент.

Навесное копровое оборудование на экскаваторах и кранах применяется для погружения свай, расположенных в плане в виде лент или групп (кустов) при длине до 14 м и массе до 6 т.

Молоты, используемые для погружения свай, по конструктивным особенностям подразделяются на механические, паровоздушные одиночного действия, дизельные штанговые и трубчатые, вибропогружатели.

Механические молоты представляют собой чугунные или стальные болванки, устанавливаемые в направляющих копровой стрелы и поднимаемые на требуемую высоту лебедкой. Сброс осуществляется механическим устройством. Масса механических молотов обычно не превышает 5 т, а частота ударов — 4-12 в 1 мин.

ТАБЛИЦА 8.27. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА КОПРОВ НА РЕЛЬСОВОМ ХОДУ

Показатель Простые и механизированные копры Универсальные копры
КП-8 КП-12 С-1006 С-582 КП-20М С-995 С-908 КУ-20 СП-56 СП-55
Полезная высота мачты, м 8 12 12 17,5 20 12 16 20 20 25
Полная высота копра, м 15 19,6 18 23,4 28 18,3 23 28,2 28,2 36,2
Грузоподъемность, т 7,5 8,5 10 9 21 8,5 12 20 20 30
Рабочий наклон, мачты:
назад
вперед

-
-

-
-

1:3
1:6

1:3
1:9
-
-

1:3
1:3

1:3
1:6

1:3
1:10

1:3
1:8

1:3
1:8
Установочный наклон (вправо, влево), град - - До 1,5 - - До 1,5 До 1,5 - До 1,5 До 1,5
Угол поворота платформы, град - - - - - - 360 360 360 360
Изменение вылета мачты, м - - 1,2 - - 1,2 1,2 1,2 1,35 1,35
Удлинение направляющих
ниже головки рельсов, м
- - 4 - - 3,5 4 4 4 4
Ширина колей, м 3,4 3,4 4 5,5 7,5 4 4 5,5 6 6
Масса, т:
копра без противовеса и молота
противовеса
максимальная молота

13,6
4
3,5

22,1
4,3
4,5

11
14
6

7,73
-
4,2

32,5
15,1
8,5

20,8
21
4,5

36,9
21
6

49
11,7
8,5

52,5
31,2
12

57
57
17
Полная установленная мощность
электродвигателя, кВт
28,4 49,2 31,5 10 78,2 26,8 46 92,2 66 89

ТАБЛИЦА 8.28. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА НАВЕСНОГО И СМЕННОГО КОПРОВОГО ОБОРУДОВАНИЯ НА БАЗЕ ТРАКТОРОВ И ЭКСКАВАТОРОВ

Показатель Копровое оборудование марки Навесное оборудование на экскаваторы
С-870 С-878К СП-49 КО-16 C-860 СП-50С
Полезная высота 8,5 8,5 12 16 10 12 10 14
Полная высота копра, м 13 13 19 23 15,5 19 14,7 21
Грузоподъемность, т 5,4 7 7 15 10 11 10 15
Рабочий наклон мачты:
назад
вперед

1:3
1:10

1:3
1:4

1:3
1:4

1:3
1:4

1:10
1:10

1:3
1:8

-
-

-
-
Установочный наклон (вправо, влево) 1:10 1:8 1:8 1:8 1:10 1:10 - -
Угол поворота мачты вокруг оси копра, град - - - - 360 360 360 360
Максимальное изменение вылета мачты, м - 0,7 0,7 1 0,5 0,5 - -
Ширина направляющих для молота, мм 360 360 360 360 360 360 360 360
Базовая машина Т-100М Т-100М Болотный
Т-100МБТП
Т-160ГП Э-652А ЭО-5111АС Э-652 Э-1004
и Э-1252
Масса копрового оборудования, т:
без молота
агрегата в целом

5,8
20,3

9,3
26,4

6,5
40

Удельное давление на грунт, МПа 0,06 0,065 0,06 - 0,087 0,08 0,08 0,085

В связи с низкой производительностью механические молоты широкого применения не получили.

Паровоздушные молоты применяют, как правило, для погружения свай массой до 8 т. Эти молоты позволяют за счет регулирования высоты подъема ударной части изменять энергию удара. Их применение не зависит от осадок свай при погружении и от температуры окружающего воздуха. Недостатками паровоздушных молотов являются отсутствие энергетической автономности и необходимость обеспечения их компрессорами (или паровыми котлами) большой производительности.

Энергетической автономностью обладают дизельные молоты. Штанговые дизельные молоты предназначены для погружения деревянных и железобетонных свай массой до 2,5 т. Трубчатые дизельные молоты обладают более высокой по сравнению со штанговыми энергией удара и применяются для погружения железобетонных свай массой до 6 т.

Недостатком дизельных молотов являются ограниченные возможности в регулировании энергии удара, плохая заводимость при осадках свай более 200 мм (когда молот работает в режиме свободного сброса) и понижение работоспособности при нагревании.

Технические характеристики молотов, применяемых для погружения свай, приведены в табл. 8.29—8.32.

Вибропогружатели, характеристики которых приведены в табл. 8.32, применяются главным образом для погружения железобетонных полых круглых свай и свай-оболочек или иногда призматических свай большой (20 м) длины.

ТАБЛИЦА 8.29. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ПАРОВОЗДУШНЫХ МОЛОТОВ

Показатель Молоты простого действия с управлением
ручным полуавтоматическим автоматическим
МПВП -3000 МПВП-4250 МПВП-6500 МПВП-8000 СССМ-570 С-276 СССМ-680 С-811 С-812Л
Масса, кг:
ударной части
молота общая

3000
3267

4250
4528

6500
6811

8000
8695

1800
2700

3000
4150

6000
8650

6000
8200

8000
11000
Энергия удара, кДж 37,5 43,2 89,7 110,0 27,0 39,0 82,0 82,0 100,0
Число ударов в 1 мин 8—12 8—12 8—12 8—12 До 30 До 30 До 30 40—50 35—40
Высота подъема, м 1250 1250 1250 1250 1500 1300 1370 1370 1370
Объемный расход
воздуха, м 3 /мин
9—11 11—15 16—20 18—26 10 14 30 18—20 26
Массовый расход пара, кг/ч 500—550 600—750 1100—1300 1200—1500 545 700 1470 1250 1500
Габариты, мм:
длина
ширина
высота

-
-
2850

-
-
2820

-
-
3125

-
-
2580

810
780
4840

1180
900
4840

1410
880
4960

1070
1150
4730

1070
1270
4730

ТАБЛИЦА 8.30. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ШТАНГОВЫХ ДИЗЕЛЬ-МОЛОТОВ

Показатель Дизель-молоты с охлаждением
подвижными неподвижными
ДБ-45 ДМ-Б8 ДМ-150 ДМ-150а С-222 С-268 С-330 С-330А
Масса, кг:
ударной части
молота общая

140
260

180
315

190
340

240
350

1200
2300

1800
3100

2500
4200

2500
4500
Энергия удара, кДж 1,0 1,50 1,50 1,95—2,00 - - - -
Число ударов в 1 мин 96—100 100—110 100 60—65 50—55 50—55 42—50 42—50
Наибольшая высота подъема
ударной части молота, мм
1000 1000 1000 1250 1790 2100 2600 2500
Габариты, мм:
длина
ширина
высота

500
360
1715

550
400
1940

620
450
1970

650
450
1980

850
800
3360

900
820
3820

870
980
4540

870
1000
4760
Размер сечения или диаметр
погружаемых свай, см
20* 18—22* 18—22* 18—22* До 30×30**

* Деревянные сваи.

** Железобетонные сваи.

ТАБЛИЦА 8.31. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ТРУБЧАТЫХ ДИЗЕЛЬ-МОЛОТОВ

Показатель Дизель-молоты с охлаждением
водяным воздушным
С-994 С-995 C-996 и
С-996 хл
С-1047,
С-1047 хл
С-1048 и
С-1048 хл
С-859 С-949 С-954 С-974
Масса ударной части, кг 600 1250 1800 2500 3500 1800 2500 3500 5000
Высота подскока ударной части, мм:
наибольшая
наименьшая

2800
2000±
±200

2800
2000±
±200

2800
2000±
±200

2800
2000±
±200

2800
2000±
±200

2800
2000±
±200

2800
2000±
±200

2800
2000±
±200

2800
2000±
±200
Энергия удара (при высоте
подскока 2500 мм), кДж
9,0 19,0 27,0 37,0 52,0 27,0 38,0 52,0 76,0
Число ударов в 1 мин, не менее 44 44 44 44 44 44 44 44 44
Масса молота с кошкой, кг 1500 2600 3650 5500 7650 3500 5000 7500 10 100
Габариты, мм:
длина
ширина
высота

640
470
3825

720
520
3955

765
600
4335

840
950
4970

890
1000
5150

700
790
4190

720
-
4970

890
1000
5080

-
-
5520

ТАБЛИЦА 8.32. ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ВИБРОПОГРУЖАТЕЛЕЙ

Марка вибропогружателя Номинальная мощность электродвигателя, кВт Статический момент массы дебалансов, кН×см Частота колебаний в 1 мин Возмущающая сила, кН Масса вибропогружателя, кг
ВПП-2А
ВП-1
ВП-3М
ВРП-30/120
ВУ-1,6
ВП-170М
ВРП-60/200
ВУ-3
40
60
100
2×60
2×75
200
2×100
2×2000
1 000
9 300
26 300
33 000
34 600
50 000
60 000
99 400
1500
420
408
300-573
458
475-550
300-460
500-550
250
185
442
До 960
960
1000-1690
До 1700
2800-3400
2 200
4 500
7 500
10 200
11 900
12 500
15 000
27 600

Примечания: 1. Вибропогружатели ВУ-1,6, ВРП-60/200 и ВУ-3 имеют проходное отверстие для извлечения грунта из полости свай-оболочек. 2. Вибропогружатели марки ВРП-30/120 и ВРП-60/200 позволяют бесступенчато регулировать момент дебалансов и скорости их вращения в процессе погружения сваи-оболочки в зависимости от проходимых грунтов.

При сооружении свайных фундаментов для объектов жилищно-гражданского и промышленного строительства наибольшее применение находят дизельные молоты (штанговые, и трубчатые), на объектах транспортного и гидротехнического строительства — паровоздушные молоты и вибропогружатели.

Подбор копрового оборудования производится при следующих условиях: давление на грунт не должно превышать допустимое; копер должен обеспечивать заданную точность погружения свай в плане и по вертикали; длина свай не должна превышать полезной высоты стрелы; грузоподъемность копра должна быть больше или равна сумме масс сваи, наголовника и полной массы молота.

Итак, сваи - конструктивный элемент, передающий нагрузки от здания (сооружения) на грунты, находящиеся значительно ниже условной нулевой отметки. Железобетонные сваи квадратного сечения 300х300мм, 350х350мм, 400х400мм длиной от 3м до 16м и составные длинной до 32м являются оптимальным выбором для строительства на слабых грунтах. В мостовом строительстве применяются центрифугированные (полые) свай диаметром 600мм.

Технология практически не меняется на протяжении уже многих лет, однако в последние годы введены определенные ограничения на применение свайных молотов в условиях городской застройки. В плотно застроенных городских районах используют буронабивные сваи , которые значительно дороже, однако при их устройстве не возникает риск разрушения соседних ветхих зданий. Или выполняют комплекс работ (устройство шпунтового ограждения, предварительный выбор грунта, лидерное бурение) по снижению негативной нагрузки на существующие фундаменты зданий и инженерные сети.

Способы погружения свай в грунт.

До начала погружения свай в грунт выполняют комплекс подготовительных работ в соответствии с проектом производства свайных работ, в состав которого входят:

  • доставка и складирование готовых железобетонных свай ,
  • доставка и монтаж оборудования для погружения, разработка схемы перемещения сваебойной установки с указанием очередности погружения свай согласно ППР ;
  • планировка площадки основания (в весенне-осенний период как правило производят подсыпку из битого кирпича или щебня);
  • геодезическая разбивка осей свайных рядов;
  • пробная забивка свай для уточнения расчета несущей способности сваи (проведение статических и динамических испытаний).

Последовательность забивки свай устанавливается проектом с учетом свойств грунта, и маневровых особенностей техники.

Геодезическая разбивка, т.е. вынос в натуру точек расположения свай осуществляется нашими специалистами на основании чертежей и полученных от заказчика осей здания. В соответствии с нормативными требованиями, допустимыми отклонениями свай от проектной оси являются значение 0,2d при линейной забивке, либо 0,3d если сваи будут объединяться фундаментной плитой. d - сечение сваи, т.е. при забивке свай 300х300мм под "плиту", допустимым значением отклонения будет 9 сантиметров.

Для погружения свай используются различные методы

  • ударный метод - забивка свай молотом
  • метод вдавливания
  • вибрационный метод - погружение свай при помощи вибрации
  • бурение и установка свай в скважину (с применением лидерного бурения)

Ударный метод.

Забивка осуществляется молотами разных типов с ударной частью весом, обычно 1,8 - 12 тонн, смонтированными на тяжелую, как правило гусеничную технику (копры, гусеничные краны, троссовые и гидравлические экскаваторы). Сваи погружают в грунт приложением вертикальной (иногда наклонной) нагрузки.

Базовая машину служит для того, чтобы зацепить сваю, поднять ее и завести в наголовник молота, двигающийся по направляющей мачты. Дальше молот сбросом ударной части забивает сваю в грунт.

Забивку сваи начинают несколькими легкими ударами с последующим увеличением силы ударов до максимальной. При отклонении положения сваи от вертикали более чем на 1 % сваю исправляют подпорами, стягиванием и т.п., или вытягивают и забивают снова. Забивка сваи продолжается до получения заданного проектом отказа - величины погружения сваи от одного удара молотом после окончания забивки. Забивку свай при приближении к проектной величине погружения производят «залогами», т. е. 10 ударами молота подряд. Погружение сваи от одного залога замеряют с точностью до 1 мм. Отказ сваи определяется как частное от деления величины погружения сваи от одного залога на число ударов в залоге.

Метод вдавливания.

Метод вдавливания свай применяется при реконструкции зданий, которые нельзя сносить, так как они представляют собой историческую ценность и охраняются законом.

Наиболее эффективной областью применения технологии вдавливания свай является погружение железобетонных свай и шпунтов вблизи или внутри существующих зданий и сооружений в условиях плотной застройки, вблизи ветхих и аварийных сооружений, в оползневых зонах и в других местах, где нельзя погружать сваи ударным методом или вибропогружением из-за недопустимости динамических, вибрационных и шумовых воздействий. Оборудование для вдавливания свай достаточно громоздко, производительность оставляет желать лучшего, однако иногда этот безударный метод просто незаменим. Наибольшее применение получили шагающие сваевдавливающие установки Sunward.

Вибрационный метод - погружение свай (шпунта) при помощи вибрации.

Метод вибропогружения эффективен при погружении свай в водонасыщенные песчаные и малосвязные грунты. При этом происходит разжижение песчаного грунта и резко уменьшаются силы трения по боковой поверхности. После прекращения вибрации эти силы трения восстанавливаются.

Вибропогружатель - возбудитель колебаний вдоль оси сваи. Устройство с вращателем и пригрузом со смещенным центром тяжести с приводом от электродвигателя, либо гидростанции подвешивается на оголовке сваи. За счет значительного веса вибропогружателя и колебаний, свая (шпунт) погружается в грунт. Вибропогражатели, в отличие от молотов, имеют определенные ограничения по типам грунтов, в которых можно работать. Также, при вибропогружении часто применяют лидерное бурение.

Технология забивки свай с применением лидерного бурения

Лидерное бурение - бурение, выполняемое перед погружением сваи. Целей у лидерного бурение может быть несколько: снижение динамической нагрузки, передаваемой при забивке сваи на близлежащие строения, снижение шума от работы дизель-молота, увеличение длины используемой сваи (при погружении в плотные грунты). Также лидерное бурение применяется в случае наличия в геологическом разрезе песчаной прослойки более 2 метров. Решение об устройстве лидерных скважин принимается проектировщиком на основании отчета об инженерно-геологических изысканиях.

Диаметр шнека при лидерном бурении под сваи 300х300 принимается 200мм-250мм в зависимости от категории грунтов. Глубина бурения, обычно, на 0,5 метра меньше глубины погружения сваи. Также, например, для забивки 10-метровой сваи, при залегании метровой песчаной прослойки на глубине 5 метров, может быть назначено лидерное бурение на глубину 6-6,5 метров для снижения негативного эффекта песка при погружении свай.

При лидерном бурении, грунт, выбираемый шнеками из скважины увеличивает высотную отметку поверхности земли (котлована) на 10 и более сантиметров (в зависимости от глубины и диаметра бурения. Необходимо грамотно подходить к производству работ по бурению т.к. при забивке сваи , скважина, находящаяся в непосредственной близости часто осыпается из-за динамических нагрузок при работе молота. Для устройства лидерных скважин при проведении свайных работ, нашей компанией используется установки ПБУ-2-317, ЛБУ-50, УРБ-2А2.

Машины и оборудование для погружения забивных свай

Используется дизель-молоты на базе полноповоротных экскаваторов серии ЭО. Экскаваторы на гусеничном ходу и служат, по большому счету, для перемещения сваебойного оборудования. Сваебойным оборудованием является мачта и непосредственно сам молот. Молот перемещается по направляющим на мачте.

Но наиболее эффективны копры с гидромолотом такие как: Junttan PM20, Junttan PM22, Junttan PM25, Hitachi KH-150-3 , Hitachi KH-180-2, Nippon-Sharyo DH, Banut, PVE, Liebherr.

В случае необходимости молот может быть заменен на буровое оборудование для производства лидерного бурения. При перебазировке с объекта на объект, с базовой машины снимается молот и мачта (состоящая из 2-3 частей). Учитывая негабаритные размеры и вес копра, его перебазировка осуществляется по специальному разрешению ГИБДД с сопровождением.

Молоты для забивки .

Молот состоит из ударной части, перемещающейся вдоль направляющих, шабота (неподвижной части) и наголовника. По типу действия различают дизель-молоты и гидромолоты.

На фотографии представлены очень распространенные штанговые дизель-молоты и отечественные гидромолоты "Ропот". Между ударной и неподвижной находится обычный цилиндр дизельного двигателя. Принцип работы также очень похож на обыкновенный дизельный двигатель. Ударная часть поднимается тросом, в этот момент открывается подача топлива, затем молот сбрасывается и в цилиндре происходит взрыв т.к. как известно, воспламенение дизельного топлива происходит от сжатия. За счет энергии удара молота и взрыва в цилиндре, свая погружается, а ударная часть молота подбрасывается вверх и снова падает. Так происходит пока не прекращается подача топлива.

Гидромолот отличается механизмом привода. Вместо цилиндра ДВС, ударная часть приводится в движение гидравликой. Причем при помощи гидравлики, ударная часть не только поднимается, но и опускается, т.е. не сбрасывается. За счет этого есть возможность регулировки высоты подъема. Если дизель-молот бьет с практически одинаковой частотой, гидромолот может бить как с максимальной силой, так и маленькими частыми ударами, что очень удобно при работе на песчаных грунтах. Вест ударной части гидромолотов составляет 3-12, в отличие от дизель-молотов, у которых ударная часть весит 1,8-3 тонны. Хотя существую импортные дизель-молоты с ударной частью 10, 14, 16 тонн.

Экологические и внешние преимущества при работе с гидромолотом:

  • Надежность, безотказность, простота эксплуатации, всесезонность, всепогодность.
  • Регулирование энергии ударов.
  • Минимальное сейсмическое воздействие на грунт, позволяющее производить сваебойные работы в плотной городской застройке без опасности для близкорасположенных зданий.
  • Производительность в 2 раза выше аналогичных устройств забивки свай свободного падения.
  • Пониженный шум.
  • Отсутствие выхлопных газов, экологическая чистота.
  • Пониженная вибрация.

При забивке железобетонных и стальных свай обязательно применяют наголовники, предохраняющие головку сваи от повреждения при ударе по ней молотом сваебойной установки. При забивке деревянных свай голову сваи предохраняют от размочаливания бугелем, преставляющим собой цилиндрическое кольцо из полосовой стали, надеваемое на голову сваи. Нижний конец деревянной сваи заостряют в виде четырехгранной или трехгранной пирамиды. При наличии в грунте твердых включений на острие сваи надевают металлический башмак, защищающий острие от размочаливания. Деревянные сван применяют при условии заложения головы сваи ниже уровня грунтовых вод.

Для того, чтобы мощные удары не разбили голову сваи, в наголовник молота вставляют деревянную прокладку, выполняющую функцию амортизатора.

ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ПРОИЗВОДСТВЕ СВАЙНЫХ РАБОТ

Установка сваебойного оборудования и свай должна быть выполнена без перерыва до полного закрепления их на месте.

В процессе забивки свай необходимо постоянно наблюдать за состоянием сваебойной установки, в случае ее неисправности, работы должны быть немедленно прекращены.

Подтаскивают сваи к копру только через отводной блок, закрепленный у основания копра и по прямой линии в пределах видимости для моториста лебедки.

К работам по забивке свай допускаются лица, знающие правила обращения с оборудованием и механизмами и сдавшие специальный технический минимум. При. кратковременной остановке молот должен быть прикреплен к копру, а подъемный канат - ослаблен. При длительных остановках молот опускают в нижнее положение и закрепляют его.

Каждый копер оборудуют звуковой сигнализацией. Перед пуском в действие свайного молота подается звуковой сигнал.

Передвижка сваебойной установки со стоянки на стоянку осуществляется только по команде бригадира и под его наблюдением.

В зимнее время рабочие площадки должны быть очищены от снега и льда и посыпаны песком.

Контроль качества при погружении (забивке) свай

Контроль качества работ по устройству свайного фундамента ведется пооперационно с оформлением актов подготовки котлована, подъездных путей, геодезической разбивки, погружения свай, устройства ростверка.

Данные о погружении свай необходимо записывать в «Журнал забивки свай». Основным требованием к качеству погружения сваи является достижение ею заданной несущей способности. Допустимая нагрузка на сваю зависит от глубины, точности и технологии ее погружения, а также от грунтовых условий. Наиболее достоверное значение несущей способности свай дает (опытная забивка свай, пробная забивка свай) их статическое испытание, однако оно трудоемко и длительно. Поэтому в процессе производства работ применяется менее точный, но простой и удобный в исполнении динамический метод испытания свай, сущность которого основана на корреляции зависимости сопротивления сваи и отказа.

Отказом сваи называется глубина погружения сваи в грунт от одного удара молота, определяемая как среднее арифметическое значение величины глубины погружения сваи от определенного числа ударов (залога). Число ударов в залоге для молотов подвесных и одиночного действия принимают равным 10 (для молотов двойного действия и вибропогружателей принимают число ударов или работу механизма в течение 2 мин). Этот фактический отказ сравнивается с расчетным (проектным), который устанавливают проектировщики исходя из инженерно-геологических условий, с целью контроля несущей способности сваи. Отказ замеряется в конце погружения сваи с точностью до 1 мм не менее чем от трех последовательных залогов. Свая, не давшая расчетного (проектного) отказа, должна быть подвергнута контрольной добивке после отдыха и засасывания ее в грунте в течение 6 суток - для глинистых и разнородных грунтов, 10 суток для водона-сыщенных мелких и пылеватых песков. 20 суток для мягко-и текучепластичных глинистых грунтов. Сваи, давшие ложный отказ, или сваи, не забитые на 10 - 15 % длины, следует подвергнуть обследованию с целью устранения причин, затрудняющих забивку. В случае; если отказ при контрольной добивке превышает расчетный, проектная организация должна провести контрольные испытания свай статической нагрузкой и откорректировать проект свайного фундамента или его часть.

Погружение свай может производиться как до проектного отказа, так и до проектной отметки (устанавливается проектом). Последнее возможно только в тех случаях, когда под острием сваи залегают слабые грунты и несущая способность сваи не превышает 200 кН.

1. Вид продукции . Погруженный в грунт элемент заданной несущей способности. Погружение ведется серией вертикальных ударов по голове сваи.

2. Состав процесса. Доставка свай на объект; установка свай на погружающий агрегат; погружение свай в грунт до проектного «отказа».

3. Вход в процесс . Приняты предыдущие работы (площадка), погружены и испытаны пробные сваи (для определения фактической длины сваи и времени ее погружения).

Испытания проводят на полностью подготовленной площадке или на отметке дна проектного котлована до начала массового изготовления (или завоза) свай. При динамических испытаниях свая проектных размеров погружается ударами молота до расчетного «отказа». При статических испытаниях проектная свая нагружается реальной вертикальной нагрузкой (грузами). При положительных результатах испытаний дается заявка на изготовление проектных свай в заданном количестве (на объект). При отрицательных результатах проектанты изменяют длину или сечение сваи и проводят новые испытания.

4. Материалы . Сваи железобетонные заводского изготовления. Сечение свай – квадратное, 300x300 мм. Используются также трубчатые сваи диаметром 400–800 мм. Длина свай составляет на объектах ПГС 5–16 м. При этом сваи длиной 12–16 м могут быть составными из двух элементов, соединяемыми в процессе погружения рабочими стыками (рис. 3.4).

При возведении опор мостов используются трубчатые сваи-оболочки диаметром 1200–6000 мм. Из отдельных секций длиной 6,0 м в процессе погружения составляется свая длиной 20,0–40,0 м.

Сваи деревянные могут использоваться лишь ниже уровня грунтовых вод (в воде дерево не гниет). На таких сваях из лиственницы построено большинство старых зданий в Санкт-Петербурге, включая соборы и дворцы. В настоящее время при строительстве промышленных и гражданских сооружений (ПГС) деревянные сваи практически не применяются.

Стальные сваи – шпунт. Стальные пластины специального профиля, шириной 200–400 мм и длиной 6–12 м. Служат для устройства подпорных стен, крепления стенок глубоких котлованов (стр. 31, рис. 2.4).

4.1. Техника . Для погружения свай в грунт используется сваепогружающая установка (СПУ). СПУ представляет комплект двух агрегатов – копра и погружателя.

Копер включает (рис. 3.5):

Базовую машину (1) – трактор, экскаватор, автомобиль, мобильный мост;
- направляющую стрелу – для удержания свай в нужном положении; для навески погружающего механизма (погружателя – 3);
- вспомогательное оборудование – лебедки для подъема сваи и погружателя; системы наведения стрелы на точку; стальные сварные или литые наголовники с набором амортизирующих прокладок (твердые породы дерева, армированная резина) (рис. 3.6).

Системы наведения обеспечивают: постановку сваи на точку; выверку по вертикали; коррекцию положения сваи в процессе погружения. Они обеспечивают:

Наклон стрелы на определенный угол в двух плоскостях;
- поступательное перемещение стрелы «влево–вправо», «вперед–назад».

Следует отметить, что не все копры имеют полный набор этих движений, большинство имеют лишь движения наклона стрелы, что осложняет наведение и снижает точность погружения свай.

Погружатель – механизм, который силовым импульсом внедряет сваю в грунт (рис. 3.8, 3.9). Он определяет вид технологии.

Рациональные области применения различных копров:

Тракторные установки – погружение свай длиной 5–12 м при рядовом расположении свай (трактор перемещается вдоль ряда), производительность 20–30 шт/смену;

Экскаваторные (или на базе стреловых кранов) – погружение свай длиной 6–16 м при кустовом расположении свай в фундаментах под колонны; с одной стоянки поворотом стрелы погружает все сваи в одном кусте и переходит к другому кусту свай. Производительность 15–25 шт/смену;

Мостовые СПУ (рельсовые или гусеничные) в комплекте с молотом – погружение свай длиной 5–10 м при рядовом расположении свай или полем (рис. 3.7). Имеют высокую производительность 40–70 свай в смену. На небольшие расстояния (от дома на дом) могут перемещаться своим ходом. Однако из-за больших начальных затрат такие установки эффективны лишь при больших объемах работ (более 1500 свай). Применяются при квартальной застройке городских микрорайонов.



В качестве погружателей используются молоты, которые различаются по роду привода: молоты внутреннего сгорания (дизельные), паровоздушные и механические (подвесные). Паровоздушные молоты бывают одиночного и двойного действия. В молотах одиночного действия сила пара или сжатого воздуха используется лишь для подъема ударной части, а рабочий ход осуществляется при ее падении на сваю. В молотах двойного действия энергия пара или сжатого воздуха используется для увеличения силы удара. Управление работой молотов бывает ручным, полуавтоматическим и автоматическим.

Основной параметр молота – масса ударной части, которая в зависимости от рода грунта определяет максимально возможную длину погружаемой сваи.

Дизельный молот штангового типа (рис. 3.8, а) включает: шабот с поршнем (2), направляющие штанги (5), ударную часть с цилиндром (4) и поршневого блока, который заканчивается шарнирной опорой, состоящей из сферической пяты и наголовника. Назначение шарнирной опоры – обеспечить центральный удар по свае при незначительном нарушении соосности молота и сваи. Для запуска дизель-молота ударная часть с помощью захвата-кошки поднимается лебедкой копра в крайнее верхнее положение (рис. 3.8, а). После этого захват освобождает ударную часть и при ее падении в цилиндре образуется сжатый воздух, в результате чего температура его сильно повышается. В это время насос плунжерного типа подает топливо в цилиндр и происходит воспламенение смеси (рис. 3.8, б). Образовавшиеся при сгорании газы отбрасывают цилиндр в исходное положение (рис. 3.8, в), и в дальнейшем молот работает автоматически до момента прекращения подачи топлива. Высоту подъема ударной части регулируют подачей топлива в цилиндр.

Для погружения свай применяют дизель-молоты с массой ударной части 600, 1200, 1800 и 2500 кг и числом ударов в минуту 50–100. Высота подъема ударной части молота 1,0–2,6 м. Достоинство дизель-молотов по сравнению с паровоздушными состоит в том, что они более мобильны и не требуют для своей работы громоздких паровых котлов или мощных компрессоров. Недостаток штанговых дизель-молотов проявляется при забивке свай в слабые грунты, когда невозможно обеспечить автоматическую его работу, так как при этом в камере сгорания не образуется высокая степень сжатия воздуха, необходимая для воспламенения топливной смеси.

В трубчатом дизель-молоте (рис. 3.9) (с массой части соответственно 1200, 1800 и 2500 кг) неподвижным является цилиндр (2), а ударной частью служит тяжелый подвижный поршень (4). Цилиндр внизу заканчивается неподвижным шаботом, передающим удар свае через упругую прокладку. Плунжерный насос подает топливо в цилиндр. Отработанные газы выходят в атмосферу через патрубок. Принцип работы трубчатого дизель-молота такой же, как и штангового.

Трубчатые дизель-молоты более надежны в работе и обладают в 1,2–0,5 раза большей погружающей способностью, чем штанговые дизель-молоты.

Недостатком этих молотов является то, что они трудно запускаются при отрицательных температурах.

Механический молот применяют при небольших объемах работ. Он состоит из ударной части массой 1000–3000 кг и захватного устройства. После того как лебедка, размещенная на копре, поднимает на необходимую высоту ударную часть молота, захватное устройство освобождает ее и при свободном падении производится удар по свае. Механические молоты недороги, долговечны и имеют простую конструкцию.

Недостаток их состоит в том, что они производят небольшое количество ударов – 3–4 в минуту, при постоянном закреплении каната к ударной части молота можно увеличить число ударов до 10–12 в минуту, но это приводит к интенсивному износу лебедки и копра.

В паровоздушном молоте двойного действия ударная часть при рабочем ходе находится под действием силы тяжести и давления пара или сжатого воздуха. Благодаря этому скорость движения ударной части значительно выше и количество ударов в минуту увеличилось до 20.

Достоинством этих молотов является их высокая погружающая способность (погружают сваи длиной до 20–25 м), а недостатком – громоздкое и тяжелое паросиловое оборудование. На объектах промышленного и гражданского строительства паровоздушные молоты двойного действия практически не применяются.

Состав процесса:

Разбивка осей свайных рядов;
- Разбивка и закрепление штырями свайных точек;
- Постановка агрегата на точку и постановка на него сваи;
- Наведение при помощи агрегата сваи на проектную точку;
- Погружение с контролем вертикальности и замером отказа;
- При достижении сваей «отказа» погружение прекращается независимо от фактической глубины погружения сваи.

«Отказ » - величина погружения сваи от одного удара из серии в 10 ударов в мм (1,5–4,0 мм), при достижении которой полностью обеспечивается проектная несущая способность сваи.

Доставленные с завода сваи складируются на бровке котлована или раскладываются у места погружения (рис. 3.10).

Закрепление свайных точек в количестве, необходимом «на смену», производится стальными штырями диаметром 12–16 мм длиной 300–400 мм. Свая подтаскивается к копру канатом через рабочий блок (рис. 3.11, а) или через отводной блок (рис. 3.11, б) при расстояниях более 15,0 м.

После постановки сваи на СПУ, выверки в плане и по вертикали запускается молот. До глубины 1,5–3,0 м погружение ведется слабыми ударами молота при сбросе ударной части с половинной высоты. Затем погружение ведется при нормальной работе молота. Непрерывно контролируется вертикальность сваи в двух направлениях. Когда визуально будет заметно, что скорость погружения приближается к расчетному «отказу», устанавливаются приборы контроля – отказомеры, по которым и определяется величина фактического отказа сваи.

При погружении свай ведется «Журнал свайных работ», в котором все сваи должны быть пронумерованы в соответствии с рабочим чертежом. По каждой свае указываются: величина «отказа»; время погружения; глубина погружения, а также особые обстоятельства («отдых», трещины, излом, свая-дублер и т.п.).

После достижения «отказа» сваи СПУ переходит на следующую свайную точку. Недопогруженная часть сваи («попы») впоследствии срезается.

В ходе погружения свай нередко возникают случаи недостижения сваей расчетного «отказа» при погружении ее на полную длину. В этих случаях рекомендуются следующие действия:

Одна свая не получила «отказ», а следующие сваи дают «отказ». Погружение свай продолжают, а рядом с дефектной сваей погружается свая-дублер;

2–5 свай подряд не дают «отказа». В этом случае необходимо прекратить дальнейшее погружение свай. После «отдыха» свай (3–7 дней) производится контрольная добивка. Как правило, в глинистых грунтах проявляется явление «засасывания» сваи и обычно контрольная добивка дает значения менее расчетного «отказа»;

После контрольной добивки группы свай не получено расчетного «отказа». Работы по погружению свай приостанавливаются, вызываются представители проектной организации для уточнения размеров свай (обычно увеличивается длина сваи).

Сдача свайного поля. При сдаче предъявляются:

Акты на погружение свай-дублеров; на замену типов свай;
- акт погружения и испытания пробных свай;
- исполнительная схема погруженных свай;
- паспорта на сваи;
- акты на устройство стыков (при составных сваях);
- журнал свайных работ (с указанием отказа каждой сваи).

Срезка голов свай. Для устройства ростверка необходимо обеспечить проектную отметку верха свай. Это обеспечивается срезкой голов свай на необходимую величину. Процесс срезки достаточно трудоемкий. Сложность заключается в том, что необходимо срезать два различных материала: камень (бетон) и сталь (арматуру), для чего требуются разные технологии и режущие инструменты.

В настоящее время срезка голов свай выполняется в основном вручную с помощью пневматических и электрических молотков. Для уменьшения объема скола бетона (рис. 3.13) используется стальная обжимная рамка. Арматурные стержни режутся огневым способом или отрезными машинами.

Ограниченно применяются механические способы срезки голов свай:

– силовое скалывание гидродомкратами (рис. 3.14, а, б);
– срезание дисковой пилой;
– излом головы сваи специальным оборудованием на базе трактора (рис. 3.14, в).

В настоящее время разрабатываются также термические, взрывные, криогенные технологии срезки голов свай.

Достоинства технологии ударного погружения свай:

Высокая производительность;
- погружение свай практически в любые виды грунтов;
- значительное повышение несущей способности сваи (на 15–30 %) за счет уплотнения грунта под острием.

Недостатки:

Динамическое воздействие на сваю (должен быть запас прочности);
- большие динамические воздействия на здания и сооружения, расположенные рядом.

При наличии рядом со строительной площадкой ветхих или аварийных зданий данная технология неприемлема.

Источник : Технология строительных процессов. Снарский В.И.