Какие ученые физики были. Верующие ученые: выдающиеся физики и математики

Во время своих экспериментов Галилео обнаружил, что тяжелые предметы падают быстрее легких из-за меньшего воздушного сопротивления: воздух мешает легкому объекту сильнее, чем тяжелому.

Решение Галилея проверить закон Аристотеля стало поворотным моментом в науке, оно ознаменовало начало проверки всех общепринятых законов опытным путем. Опыты Галилея с падающими телами привели к нашему начальному пониманию ускорения под действием гравитации.

Всемирное тяготение

Говорят, что однажды Ньютон сидел под яблоней в саду и отдыхал. Вдруг он увидел, как с ветки упало яблоко. Этот простой инцидент заставил его задуматься, почему яблоко упало вниз, в то время, как Луна все время оставалась в небе. Именно в этот момент в мозгу молодого Ньютона свершилось открытие: он понял, что на яблоко и Луну действует единая сила гравитации.


Ньютон представил себе, что на весь фруктовый сад действовала сила, которая притягивала к себе ветки и яблоки. Его более важно то, что он распространил эту силу до самой Луны. Ньютон понял, что сила притяжения есть везде, до него никто до этого не додумывался.

Согласно этому закону, гравитация влияет на все тела во Вселенной, включая яблоки, луны и планеты. Сила притяжения такого крупного тела, как Луна, может провоцировать такие явления, как приливы и отливы океанов на Земле.

Вода в той части океана, которая находится ближе к Луне, испытывает большее притяжение, поэтому Луна, можно сказать, перетягивает воду из одной части океана в другую. А так, как Земля вращается в противоположном направлении, эта задержанная Луной вода оказывается дальше привычных берегов.

Понимание Ньютоном того, что у каждого предмета есть собственная сила притяжения, стало великим научным открытием. Однако, его дело было еще не завершено.

Законы движения

Возьмем, например хоккей. Бьете клюшкой по шайбе, и она скользит по льду. Это первый закон: под действием силы предмет движется. Если бы не было трения о лед, то шайба скользила бы бесконечно долго. Когда вы бьете клюшкой по шайбе, то придаете ей ускорение.

Второй закон гласит: ускорение прямо пропорционально приложенной силе и обратно пропорционально массе тела.

А согласно третьему закону при ударе шайба действует на клюшку с такой же силой, как клюшка на шайбу, т.е. сила действия равна силе противодействия.

Законы движения Ньютона были смелым решением объяснять механику функционирования Вселенной, они стали основой классической физики.

Второй закон термодинамики

Наука о термодинамике – это наука о тепле, которая преобразуется в механическую энергию. От нее зависела вся техника во время промышленной революции.

Тепловая энергия может быть преобразована в энергию движения, например, путем вращения коленчатого вала или турбины. Важнее всего выполнить как можно больше работы, используя как можно меньше топлива. Это наиболее экономически выгодно, поэтому люди стали изучать принципы работы паровых двигателей.


Среди тех, кто занимался этим вопросом, был немецкий ученый . В 1865 году он сформулировал Второй закон термодинамики . Согласно этому закону, при любом энергетическом обмене, например, во время нагревания воды в паровом котле, часть энергии пропадает. Клаузиус ввел в оборот слово энтропия , объясняя с его помощью ограниченную эффективность паровых двигателей. Часть тепловой энергии теряется во время преобразования в механическую.

Это утверждение изменило наше понимание того, как функционирует энергия. Не существует теплового двигателя, который был бы эффективен на 100%. Когда вы едете на машине, только 20% энергии бензина действительно тратится на движение. Куда девается остальная часть? На нагревание воздуха, асфальта и шин. Цилиндры в блоке цилиндров нагреваются и изнашиваются, а детали ржавеют. Грустно думать о том, насколько расточительны такие механизмы.

Хотя Второй закон термодинамики был основой промышленной революции, следующее великое открытие привело мир в новое, его современное состояние.

Электромагнетизм


Ученые научились создавать магнитную силу с помощью электричества, когда пустили ток по завитому проводу. В результате получился электромагнит. Как только подается ток, возникает магнитное поле. Нет напряжения – нет поля.

Электрогенератор в своей самой простейшей форме является витком проволоки между полюсами магнита. Майкл Фарадей обнаружил, что когда магнит и проволока находятся на близком расстоянии, по проволоке проходит ток. По этому принципу работают все электрогенераторы.

Фарадей вел записи о своих экспериментах, но шифровал их. Тем не менее они были по достоинству оценены физикомДжеймсом Клерком Максвеллом , который использовал их, чтобы еще лучше понять принципы электромагнетизма . Максвелл позволил человечеству понять, как электричество распределяется по поверхности проводника.

Если вы хотите знать, каким был бы мир без открытий Фарадея и Максвелла, то представьте себе, что электричество не существует: не было бы радио, телевидения, мобильных телефонов, спутников, компьютеров и всех средств связи. Представьте себе, что вы в 19 веке, потому что без электричества вы бы именно там и оказались.

Совершая открытия, Фарадей и Максвелл не могли знать, что их труд вдохновил одного юношу на раскрытие тайн света и на поиск его связи с величайшей силой Вселенной. Этим юношей был Альберт Эйнштейн.

Теория относительности

Эйнштейн однажды сказал, что все теории нужно объяснять детям. Если они не поймут объяснения, то значит теория бессмысленна. Будучи ребенком, Эйнштейн однажды прочитал детскую книжку об электричестве, тогда оно только появлялось, и простой телеграф казался чудом. Эта книжка была написана неким Бернштейном, в ней он предлагал читателю представить себя едущим внутри провода вместе с сигналом. Можно сказать, что тогда в голове Эйнштейна и зародилась его революционная теория.


В юношестве, вдохновленный своим впечатлением от той книги, Эйнштейн представлял себе, как он двигается вместе с лучом света. Он обдумывал эту мысль 10 лет, включая в размышления понятие света, времени и пространства.

В мире, который описывал Ньютон, время и пространство были отделены друг от друга: когда на Земле 10 часов утра, то такое же время было и на Венере, и на Юпитере, и по всей Вселенной. Время было тем, что никогда не отклонялось и не останавливалось. Но Эйнштейн по-другому воспринимал время.

Время – это река, которая извивается вокруг звезд, замедляясь и ускоряясь. А если пространство и время могут изменяться, то меняются и наши представления об атомах, телах и вообще о Вселенной!

Эйнштейн демонстрировал свою теорию с помощью так называемых мыслительных экспериментов. Самый известный из них – это «парадокс близнецов» . Итак, у нас есть двое близнецов, один из которых улетает в космос на ракете. Так как она летит почти со скоростью света, время внутри нее замедляется. После возвращения этого близнеца на Землю оказывается, что он моложе того, кто остался на планете. Итак, время в разных частях Вселенной идет по-разному. Это зависит от скорости: чем быстрее вы движетесь, тем медленнее для вас идет время.

Этот эксперимент в какой-то степени проводится с космонавтами на орбите. Если человек находится в открытом космосе, то время для него идет медленней. На космической станции время идет медленней. Этот феномен затрагивает и спутники. Возьмем, например, спутники GPS: они показывают ваше положение на планете с точностью до нескольких метров. Спутники движутся вокруг Земли со скоростью 29000 км/ч, поэтому к ним применимы постулаты теории относительности. Это нужно учитывать, ведь если в космосе часы идут медленнее, то синхронизация с земным временем собьется и система GPS не будет работать.

E=mc 2

Вероятно, это самая известная в мире формула. В теории относительности Эйнштейн доказал, что при достижении скорости света условия для тела меняются невообразимым образом: время замедляется, пространство сокращается, а масса растет. Чем выше скорость, тем больше масса тела. Только подумайте, энергия движения делает вас тяжелее. Масса зависит от скорости и энергии. Эйнштейн представил себе, как фонарик испускает луч света. Точно известно, сколько энергии выходит из фонарика. При этом он показал, что фонарик стал легче, т.е. он стал легче, когда начал испускать свет. Значит E – энергия фонарика зависит от m – массы в пропорции, равной c 2 . Все просто.

Эта формула показывала и на то, что в маленьком предмете может быть заключена огромная энергия. Представьте себе, что вам бросают бейсбольный мяч и вы его ловите. Чем сильнее его бросят, тем большей энергией он будет обладать.

Теперь что касается состояния покоя. Когда Эйнштейн выводил свои формулы, он обнаружил, что даже в состоянии покоя тело обладает энергией. Посчитав это значение по формуле, вы увидите, что энергия поистине огромна.

Открытие Эйнштейна было огромным научным скачком. Это был первый взор на мощь атома. Не успели ученые полностью осознать это открытие, как случилось следующее, которое вновь повергло всех в шок.

Квантовая теория

Квантовый скачок – самый малый возможный скачок в природе, при этом его открытие стало величайшим прорывом научной мысли.

Субатомные частицы, например, электроны, могут передвигаться из одной точку в другую, не занимая пространство между ними. В нашем макромире это невозможно, но на уровне атома – это закон.

Квантовая теория появилась в самом начале 20 века, когда случился кризис в классической физике. Было открыто множество феноменов, которые противоречили законам Ньютона. Мадам Кюри , например, открыла радий, который сам по себе светится в темноте, энергия бралась из ниоткуда, что противоречило закону сохранения энергии. В 1900 году люди считали, что энергия непрерывна, и что электричество и магнетизм можно было бесконечно делить на абсолютно любые части. А великий физик Макс Планк дерзко заявил, что энергия существует в определенных объемах – квантах .


Если представить себе, что свет существует только в этих объемах, то становятся понятны многие феномены даже на уровне атома. Энергия выделяется последовательно и в определенном количестве, это называется квантовым эффектом и означает, что энергия волнообразна.

Тогда думали, что Вселенная была создана совсем по-другому. Атом представлялся чем-то, напоминающим шар для боулинга. А как может шар иметь волновые свойства?

В 1925 году австрийский физик , наконец, составил волновое уравнение, которое описывало движение электронов. Внезапно стало возможным заглянуть внутрь атома. Получается, что атомы одновременно являются и волнами, и частицами, но при этом непостоянными.

Можно ли вычислить возможность того, что человек разделится на атомы, а потом материализуется по другую сторону стены? Звучит абсурдно. Как можно, проснувшись утром, оказаться на Марсе? Как можно пойти спать, а проснуться на Юпитере? Это невозможно, но вероятность этого подсчитать вполне реально. Данная вероятность очень низка. Чтобы это случилось, человеку нужно было бы пережить Вселенную, а вот у электронов это случается постоянно.

Все современные «чудеса» вроде лазерных лучей и микрочипов работают на основании того, что электрон может находиться сразу в двух местах. Как это возможно? Не знаешь, где точно находится объект. Это стало таким трудным препятствием, что даже Эйнштейн бросил заниматься квантовой теорией, он сказал, что не верит, что Господь играет во Вселенной в кости.

Несмотря на всю странность и неопределенность, квантовая теория остается пока что лучшим нашим представлением о субатомном мире.

Природа света

Древние задавались вопросом: из чего состоит Вселенная? Они считали, что она состоит из земли, воды, огня и воздуха. Но если это так, то что же такое свет? Его нельзя поместить в сосуд, нельзя дотронуться до него, почувствовать, он бесформенный, но присутствует везде вокруг нас. Он одновременно везде и нигде. Все видели свет, но не знали, что это такое.

Физики пытались ответить на этот вопрос на протяжении тысячи лет. над поиском природы света работали величайшие умы, начиная с Исаака Ньютона. Сам Ньютон использовал солнечный свет, разделенный призмой, чтобы показать все цвета радуги в одном луче. Это значило, что белый свет состоит из лучей всех цветов радуги.


Ньютон показал, что красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый цвета могут быть объединены в белый свет. Это привело его к мысли, что свет делится на частицы, которые он назвал корпускулами. Так появилась первая световая теория – корпускулярная.

Представьте себе морские волны: любой человек знает, что когда одна из волн сталкивается с другой под определенным углом, обе волны смешиваются. Юнг проделал то же самое со светом. Он сделал так, чтобы свет от двух источников пересекался, и место пересечения было отчетливо видно.

Итак, тогда было все две световые теории: корпускулярная у Ньютона и волновая у Юнга . И тогда за дело взялся Эйнштейн, который сказал, что возможно, обе теории имеют смысл. Ньютон показал, что у света есть свойства частиц, а Юнг доказал, что свет может иметь волновые свойства. Все это – две стороны одного и того же. Возьмем, например, слона: если вы возьмете его за хобот, то подумаете, что это змея, а если обхватите его ногу, то вам покажется, что это дерево, но на самом деле слон обладает качествами и того, и другого. Эйнштейн ввел понятие дуализма света , т.е. наличия у света свойств как частиц, так и волн.

Чтобы увидеть свет таким, каким мы знает его сегодня, потребовалась работа трех гениев на протяжении трех веков. Без их открытий мы, возможно, до сих пор жили бы в раннем Средневековье.

Нейтрон

Атом так мал, что его трудно себе представить. В одну песчинку помещается 72 квинтиллиона атомов. Открытие атома привело к другому открытию.


О существовании атома люди знали уже 100 лет назад. Они думали, что электроны и протоны равномерно распределены в нем. Это назвали моделью типа «пудинг с изюмом», потому что считалось, что электроны были распределены внутри атома как изюм внутри пудинга.

В начале 20 века провел эксперимент с целью еще лучше исследовать структуру атома. Он направлял на золотую фольгу радиоактивные альфа-частицы. Он хотел узнать, что произойдет, когда альфа-частицы ударятся о золото. Ничего особенного ученый не ожидал, так как думал, что большинство альфа-частиц пройдут сквозь золото, не отражаясь и не изменяя направление.

Однако, результат был неожиданным. По его словам, это было то же самое, что выстрелить 380-мм снарядом по куску материи, и при этом снаряд отскочил бы от нее. Некоторые альфа-частицы сразу отскочили от золотой фольги. Это могло произойти, только если бы внутри атома было небольшое количество плотного вещества, оно не распределено как изюм в пудинге. Резерфорд назвал это небольшое количество вещества ядром .

Чедвик провел эксперимент, который показал, что ядро состоит из протонов и нейтронов. Для этого он использовал очень умный метод распознавания. Для перехвата частиц, которые выходили из радиоактивного процесса, Чедвик применял твердый парафин.

Сверхпроводники

Лаборатория Ферми обладает одним из крупнейших в мире ускорителем частиц. Это 7-километровое подземное кольцо, в котором субатомные частицы ускоряются почти до скорости света, а затем сталкиваются. Это стало возможным только после того, как появились сверхпроводники .

Сверхпроводники были открыты примерно в 1909 году. Голландский физик по имени стал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры – растет она или падает.


Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называетсясверхпроводимостью .

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача – найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля – это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее. С разработкой ускорителей, которые могли сталкивать субатомные частицы на скорости света, человек узнал о существовании десятков других частиц, на которые разбивались атомы. Физики стали называть все это «зоопарком частиц».

Американский физик Мюррей Гелл-Ман заметил закономерность в ряде новооткрытых частиц «зоопарка». Он делил частицы по группам в соответствии с обычными характеристиками. По ходу он изолировал мельчайшие компоненты ядра атома, из которых состоят сами протоны и нейтроны.

Открытые Гелл-Маном кварки были для субатомных частиц тем же, чем была периодическая таблица для химических элементов. За свое открытие в 1969 году Мюррею Гелл-Ману была присуждена Нобелевская премия в области физики. Его классификация мельчайших материальных частиц упорядочила весь их «зоопарк».

Хотя Гелл-Маном был уверен в существовании кварков, он не думал, что кто-то сможет их в действительности обнаружить. Первым подтверждением правильности его теорий были удачные эксперименты его коллег, проведенные на Стэнфордском линейном ускорителе. В нем электроны отделялись от протонов, и делался макроснимок протона. Оказалось, что в нем было три кварка .

Ядерные силы

Наше стремление найти ответы на все вопросы о Вселенной привело человека как внутрь атомов и кварков, так и за пределы галактики. Данное открытие – результат работы многих людей на протяжении столетий.

После открытий Исаака Ньютона и Майкла Фарадея ученые считали, что у природы две основные силы: гравитация и электромагнетизм. Но в 20 веке были открыты еще две силы, объединенные одним понятием – атомная энергия. Таким образом, природных сил стало четыре.

Каждая сила действует в определенном спектре. Гравитация не дает нам улететь в космос со скоростью 1500 км/ч. Затем у нас есть электромагнитные силы – это свет, радио, телевидение и т.д. кроме этого существую еще две силы, поле действия которых сильно ограничено: есть ядерное притяжение, которое не дает ядру распасться, и есть ядерная энергия, которая излучает радиоактивность и заражает все подряд, а также, кстати, нагревает центр Земли, именно благодаря ей центр нашей планеты не остывает вот уже несколько миллиардов лет – это действие пассивной радиации, которая переходи в тепло.

Как обнаружить пассивную радиацию? Это возможно благодаря счетчикам Гейгера . Частицы, которые высвобождаются, когда расщепляется атом, попадают в другие атомы, в результате чего создается небольшой электроразряд, который можно измерить. При его обнаружении счетчик Гейгера щелкает.

Как же измерить ядерное притяжение? Тут дело обстоит труднее, потому что именно эта сила не дает атому распасться. Здесь нам нужен расщепитель атома. Нужно буквально разбить атом на осколки, кто-то сравнил этот процесс со сбросом пианино с лестницы с целью разобраться в принципах его работы, слушая звуки, которые пианино издает, ударяясь о ступеньки. (weak force, слабое взаимодействие) и ядерная энергия (strong force, сильное взаимодействие). Последние две называются квантовыми силами, их описание можно объединить в нечто под названием стандартной модели. Возможно, это самая уродливая теория в истории науки, но она действительно возможна на субатомном уровне. Теория стандартной модели претендует на то, чтобы стать высшей, но от этого она не перестает быть уродливой. С другой стороны, у нас есть гравитация – великолепная, прекрасная система, она красива до слез – физики буквально плачут, видя формулы Эйнштейна. Они стремятся объединить все силы природы в одну теорию и назвать ее «теория всего». Она объединила бы все четыре силы в одну суперсилу, которая существует с начала времен.

Неизвестно, сможем ли мы когда-нибудь открыть суперсилу, которая включала бы в себя все четыре основные силы Природы и сможем ли создать физическую теорию Всего. Но одно известно точно: каждое открытие ведет к новым исследованиям, а люди – самый любопытный вид на планете – никогда не перестанут стремиться понимать, искать и открывать.

Наше понимание окружающего мира в расцвет технологической эры - всё это, и многое другое, является результатом работы многочисленных ученых. Мы живем в прогрессивном мире, который развивается огромными темпами. Этот рост и прогрессия - продукт науки, многочисленных исследований и экспериментов. Все, чем мы пользуемся, включая автомобили, электричество, здравоохранение и науку - результат изобретений и открытий этих интеллектуалов. Если бы не величайшие умы человечества, мы все еще жили бы в Средневековье. Люди воспринимают все как должное, но стоит все же отдать дань тем, благодаря кому мы имеем то, что имеем. В этом списке представлены десять величайших ученых в истории, изобретения которых изменили нашу жизнь.

Исаак Ньютон (1642-1727)

Сэр Исаак Ньютон — английский физик и математик, широко расценивается, как один из самых величайших ученых всех времен. Вклад Ньютона в науку широк и неповторим, а выведенные законы все еще преподаются в школах, как основа научного понимания. Его гений всегда упоминается вместе со смешной историей — якобы, Ньютон открыл силу тяжести благодаря яблоку, упавшему с дерева ему на голову. Правдива история про яблоко, или нет, но Ньютон также утвердил гелиоцентрическую модель космоса, построил первый телескоп, сформулировал эмпирический закон охлаждения и изучил скорость звука. Как математик, Ньютон также сделал уйму открытий, повлиявших на дальнейшее развитие человечества.

Альберт Эйнштейн (1879-1955)

Альберт Эйнштейн — физик немецкого происхождения. В 1921 ему присудили Нобелевскую премию за открытие закона фотоэлектрического эффекта. Но самое важное достижение величайшего ученого в истории — теория относительности, которая наряду с квантовой механикой формирует базис современной физики. Он также сформулировал отношение эквивалентности массовой энергии E=m, который назван как самое известное уравнение в мире. Он также сотрудничал с другими учеными на работах, таких как Статистика Бозе-Эйнштейна. Письмо Эйнштейна президенту Рузвельту в 1939, приводя в готовность его возможного ядерного оружия, как предполагается, является ключевым стимулом в разработке атомной бомбы США. Эйнштейн полагает, что это самая большая ошибка его жизни.

Джеймс Максвелл (1831-1879)

Максвелл — шотландский математик и физик, ввел понятие электромагнитного поля. Он доказал, что свет и электромагнитное поле перемещаются с одинаковой скоростью. В 1861 Максвелл сделал первую цветную фотографию после исследований в поле оптики и цветов. Работа Максвелла над термодинамикой и кинетической теорией также помогла другим ученым сделать целый ряд важных открытий. Распределение Максвела-Больцмана — еще один важнейший вклад в развитие теории относительности и квантовой механики.

Луи Пастер (1822-1895)

Луи Пастер, французский химик и микробиолог, главным изобретением которого стал процесс пастеризации. Пастер сделал ряд открытий в области вакцинации, создав вакцины от бешенства и сибирской язвы. Он также изучил причины и выработал методы профилактики болезней, чем спас множество жизней. Все это сделало Пастера “отцом микробиологии”. Этот величайший ученый основал институт Пастера, чтобы продолжить научные исследования во многих областях.

Чарльз Дарвин (1809-1882)

Чарльз Дарвин является одной из наиболее влиятельных фигур в истории человечества. Дарвин, английский натуралист и зоолог, выдвинул эволюционную теорию и эволюционизм. Он обеспечил основание для понимания происхождения человеческой жизни. Дарвин объяснил, что вся жизнь появилась от общих предков и что развитие происходило посредством естественного отбора. Это одно из доминирующих научных объяснений разнообразия жизни.

Мария Кюри (1867-1934)

Марии Кюри присудили Нобелевскую премию в Физике (1903) и Химии (1911). Она стала не только первой женщиной, которая получила премию, но также и единственной женщиной, сделавшей это в двух полях и единственным человеком, который достиг этого в разных науках. Ее основным полем исследования была радиоактивность — методы изоляции радиоактивных изотопов и открытие элементов полония и радия. Во время Первой мировой войны Кюри открыла первый центр рентгенологии во Франции, а также разработала мобильный полевой рентген, которые помог спасти жизни многих солдат. К сожалению, длительное воздействие радиации привело к апластической анемии, от которой Кюри и умерла в 1934 году.

Никола Тесла (1856-1943)

Никола Тесла, сербский американец, наиболее известный своей работой в области современной системы электроснабжения и исследований переменного тока. Тесла на начальном этапе работал у Томаса Эдисона — разрабатывал двигатели и генераторы, но позже уволился. В 1887 он построил асинхронный двигатель. Эксперименты Теслы дали начало изобретению радиосвязи, а особый характер Теслы дал ему прозвище «сумасшедшего ученого». В честь этого величайшего ученого, в 1960 году единицу измерения индукции магнитного поля назвали "теслой".

Нильс Бор (1885-1962)

Датскому физику Нильсу Бору присудили Нобелевскую премию в 1922, за его работу над квантовой теорией и строением атома. Бор известен открытием модели атома. В честь этого величайшего ученого даже назвали элемент ‘Бориум’, ранее известный, как "гафний". Бор также сыграл важную роль в основании CERN — Европейской организации по ядерным исследованиям.

Галилео Галилей (1564-1642)

Галилео Галилей наиболее известен своими достижениями в астрономии. Итальянский физик, астроном, математик и философ, он улучшил телескоп и сделал важные астрономические наблюдения, среди которых подтверждение фаз Венеры и открытие спутников Юпитера. Неистовая поддержка гелиоцентризма стала причиной преследований ученого, Галилея даже подвергли домашнему аресту. В это время он написал ‘Две Новые Науки’, благодаря которым был назван “Отцом современной Физики”.

Аристотель (384-322 до н.э.)

Аристотель — греческим философом, который является первым настоящим ученым в истории. Его взгляды и идеи влияли на ученых и в более поздние года. Он был учеником Платона и учителем Александра Великого. Его работа охватывает широкое разнообразие предметов — физика, метафизика, этика, биология, зоология. Его взгляды на естественные науки и физику были инновационными и стали базой для дальнейшего развития человечества.

Дмитрий Иванович Менделеев (1834 — 1907)

Дмитрия Ивановича Менделеева можно смело назвать одним из самых величайших ученых в истории человечества. Он открыл один из фундаментальных законов мироздания — периодический закон химических элементов, которому подчинено все мироздание. История этого удивительного человека заслуживает многих томов, а его открытия стали двигателем развития современного мира.

Как ни парадоксально это звучит, но советскую эпоху можно расценивать как весьма продуктивный отрезок времени. Даже в сложный послевоенный период научные разработки в СССР финансировались довольно щедро, а сама профессия ученого была престижной и хорошо оплачиваемой.

Благоприятный финансовый фон вкупе с наличием по-настоящему одаренных людей принесли замечательные результаты: в советский период возникла целая плеяда ученых-физиков, имена которых известны не только на постсоветском пространстве, но и во всём мире.

Представляем вашему вниманию материал об известных физиках СССР, сделавших высокий вклад в мировую науку.

Сергей Иванович Вавилов (1891-1951) . Несмотря на далеко не пролетарское происхождение, этот ученый сумел победить классовую фильтрацию и стать отцом-основателем целой школы физической оптики. Вавилов является соавтором открытия эффекта Вавилова-Черенкова, за которое впоследствии (уже после смерти Сергея Ивановича) была получена Нобелевская премия.

Виталий Лазаревич Гинзбург (1916-2009) . Широкое признание ученый получил за опыты в области нелинейной оптики и микрооптики; а также за исследования в области поляризации люминесценции. В появлении общераспространенных люминесцентных ламп есть немалая заслуга Гинзбурга: именно он активно развивал прикладную оптику и наделял сугубо теоретические открытия практической ценностью.

Лев Давидович Ландау (1908-1968) . Ученый известен не только как один из родоначальников советской школы физики, но и как человек с искромётным юмором. Лев Давидович вывел и сформулировал несколько базовых понятий в квантовой теории, провел фундаментальные исследования в сфере сверхнизких температур и сверхтекучести. В настоящее время Ландау стал человеком-легендой в теоретической физике: его вклад помнят и чтут.

Андрей Дмитриевич Сахаров (1921-1989) . Соавтор изобретения водородной бомбы и блестящий физик-ядерщик пожертвовал своим здоровьем ради дела мира и общей безопасности. Ученый является автором изобретения схемы «слойки Сахарова». Андрей Дмитриевич – яркий образчик того, как в СССР обращались с непокорными учеными: долгие годы диссидентства подорвали здоровье Сахарову и не позволили его таланту раскрыться во всю мощь.

Пётр Леонидович Капица (1894-1984) . Ученого вполне справедливо можно назвать «визитной карточкой» советской науки – фамилия «Капица» была известна каждому гражданину СССР от мала до велика. Петр Леонидович внес огромный вклад в физику низких температур: в результате проведенных им исследований наука обогатилась множеством открытий. К числу таковых относится явление сверхтекучести гелия, установление криогенных связей в различных веществах и многое другое.

Игорь Васильевич Курчатов (1903-1960) . Вопреки расхожим представлениям, Курчатов трудился не только над ядерной и водородной бомбами: основное направление научных исследований Игоря Васильевича было посвящено разработкам расщепления атома в мирных целях. Немало работы ученый сделал в теории магнитного поля: до сих пор на многих кораблях применяют изобретенную Курчатовым систему размагничивания. Помимо научного чутья, физик обладал хорошими организаторскими качествами: под руководством Курчатова было реализовано множество сложнейших проектов.

Увы, современная наука не научилась измерить известность или вклад в науку в каких-либо объективных величинах: ни одна из существующих методик не позволяет составить стопроцентный по достоверности рейтинг популярности или оценить в цифрах ценность научных открытий. Воспринимайте данный материал как напоминание о великих личностях, некогда живших с нами на одной земле и в одной стране.

К сожалению, в рамках одной статьи мы не можем упомянуть всех советских физиков, известных не только в узких научных кругах, но и среди широкой общественности. В последующих материалах мы обязательно расскажем о других прославленных ученых, в том числе получивших Нобелевскую Премию по физике.

1. П.Н. Яблочков и А.Н. Лодыгин - первая в мире электрическая лампочка

2. А.С. Попов - радио

3. В.К.Зворыкин (первый в мире электронный микроскоп, телевизор и телевещание)

4. А.Ф. Можайский - изобретатель первого в мире самолета

5. И.И. Сикорский - великий авиаконструктор, создал первый в мире вертолет, первый в мире бомбардировщик

6. А.М. Понятов - первый в мире видеомагнитофон

7. С.П.Королев - первая в мире баллистическая ракета, космический корабль, первый спутник Земли

8. А.М.Прохоров и Н.Г. Басов - первый в мире квантовый генератор - мазер

9. С. В.Ковалевская (первая в мире женщина - профессор)

10. С.М. Прокудин-Горский - первая в мире цветная фотография

11. А.А.Алексеев - создатель игольчатого экрана

12. Ф.А. Пироцкий - первый в мире электрический трамвай

13. Ф.А.Блинов - первый в мире гусеничный трактор

14. В.А. Старевич - объемно-мультипликационное кино

15. Е.М. Артамонов - изобрёл первый в мире велосипед с педалями, рулем, поворачивающимся колесом

16. О.В. Лосев - первый в мире усилительный и генерирующий полупроводниковый прибор

17. В.П. Мутилин - первый в мире навесной строительный комбайн

18. А. Р. Власенко - первая в мире зерноуборочная машина

19. В.П. Демихов - первым в мире осуществил пересадку легких и первым создал модель искусственного сердца

20. А.П. Виноградов - создал новое направление в науке - геохимию изотопов

21. И.И. Ползунов - первый в мире тепловой двигатель

22. Г. Е. Котельников - первый ранцевый спасательный парашют

23. И.В. Курчатов - первая в мире АЭС (Обнинская), также под его руководством была разработана первая в мире водородная бомба мощностью 400 кт, подорванная 12 августа 1953 года. Именно Курчатовский коллектив разработал термоядерную бомбу РДС-202 (Царь-бомба) рекордной мощности 52 000 кт.

24. М. О. Доливо-Добровольский - изобрёл систему трехфазного тока, построил трехфазный трансформатор, чем поставил точку в споре сторонников постоянного (Эдисон) и переменного тока

25. В. П. Вологдин - первый в мире высоковольтный ртутный выпрямитель с жидким катодом, разработал индукционные печи для использования токов высокой частоты в промышленности

26. С.О. Костович - создал в 1879 году первый в мире бензиновый двигатель

27. В.П.Глушко - первый в мире эл/термический ракетный двигатель

28. В. В. Петров - открыл явление дугового разряда

29. Н. Г. Славянов - дуговая электросварка

30. И. Ф. Александровский - изобрёл стереофотоаппарат

31. Д.П. Григорович - создатель гидросамолета

32. В.Г.Федоров - первый в мире автомат

33. А.К.Нартов - построил первый в мире токарный станок с подвижным суппортом

34. М.В.Ломоносов - впервые в науке сформулировал принцип сохранения материи и движения, впервые в мире начал читать курс физической химии, впервые обнаружил на Венере существование атмосферы

35. И.П.Кулибин - механик, разработал проект первого в мире деревянного арочного однопролетного моста, изобретатель прожектора

36. В.В.Петров - физик, разработал самую большую в мире гальваническую батарею; открыл электрическую дугу

37. П.И.Прокопович - впервые в мире изобрёл рамочный улей, в котором применил магазин с рамками

38. Н.И.Лобачевский - Математик, создатель «неевклидовой геометрии»

39. Д.А.Загряжский - изобрёл гусеничный ход

40. Б.О.Якоби - изобрёл гальванопластику и первый в мире электродвигатель с непосредственным вращением рабочего вала

41. П.П.Аносов - металлург, раскрыл тайну изготовления древних булатов

42. Д.И.Журавский - впервые разработал теорию расчетов мостовых ферм, применяемую в настоящее время во всем мире

43. Н.И.Пирогов - впервые в мире составил атлас «Топографическая анатомия», не имеющий аналогов, изобрел наркоз, гипс и многое другое

44. И.Р. Германн - впервые в мире составил сводку урановых минералов

45. А.М.Бутлеров - впервые сформулировал основные положения теории строения органических соединений

46. И.М.Сеченов - создатель эволюционной и других школ физиологии, опубликовал свой основной труд «Рефлексы головного мозга»

47. Д.И.Менделеев - открыл периодический закон химических элементов, создатель одноименной таблицы

48. М.А.Новинский - ветеринарный врач, заложил основы экспериментальной онкологии

49. Г.Г.Игнатьев - впервые в мире разработал систему одновременного телефонирования и телеграфирования по одному кабелю

50. К.С.Джевецкий - построил первую в мире подводную лодку с электродвигателем

51. Н.И.Кибальчич - впервые в мире разработал схему ракетного летательного аппарата

52. Н.Н.Бенардос - изобрёл электросварку

53. В.В.Докучаев - заложил основы генетического почвоведения

54. В.И.Срезневский - Инженер, изобрёл первый в мире аэрофотоаппарат

55. А.Г.Столетов - физик, впервые в мире создал фотоэлемент, основанный на внешнем фотоэффекте

56. П.Д.Кузьминский - построил первую в мире газовую турбину радиального действия

57. И.В. Болдырев - первая гибкая светочувствительная негорючая пленка, легла в основу создания кинематографа

58. И.А.Тимченко - разработал первый в мире киноаппарат

59. С.М.Апостолов-Бердичевский и М.Ф.Фрейденберг - создали первую в мире автоматическую телефонную станцию

60. Н.Д.Пильчиков - физик, впервые в мире создал и успешно демонстрировал систему беспроводного управления

61. В.А.Гассиев - инженер, построил первую в мире фотонаборную машину

62. К.Э.Циолковский - основоположник космонавтики

63. П.Н.Лебедев - физик, впервые в науке экспериментально доказал существование давления света на твердые тела

64. И.П.Павлов - создатель науки о высшей нервной деятельности

65. В.И.Вернадский - естествоиспытатель, создатель многих научных школ

66. А.Н.Скрябин - композитор, впервые в мире использовал световые эффекты в симфонической поэме «Прометей»

67. Н.Е.Жуковский - создатель аэродинамики

68. С.В.Лебедев - впервые получил искусственный каучук

69. Г.А.Тихов - астроном, впервые в мире установил, что Земля при наблюдении ее из космоса должна иметь голубой цвет. В дальнейшем, как известно, это подтвердилось при съемках нашей планеты из космоса

70. Н.Д.Зелинский - разработал первый в мире угольный высокоэффективный противогаз

71. Н.П. Дубинин - генетик, открыл делимость гена

72. М.А. Капелюшников - изобрел турбобур в 1922 году

73. Е.К. Завойский открыл электрический парамагнитный резонанс

74. Н.И. Лунин - доказал, что в организме живых существ есть витамины

75. Н.П. Вагнер - открыл педогенез насекомых

76. Святослав Федоров - первый в мире провёл операцию по лечению глаукомы

77. С.С. Юдин - впервые применил в клинике переливание крови внезапно умерших людей

78. А.В. Шубников - предсказал существование и впервые создал пьезоэлектрические текстуры

79. Л.В. Шубников - эффект Шубникова-де Хааза (магнитные свойства сверхпроводников)

80. Н.А. Изгарышев - открыл явление пассивности металлов в неводных электролитах

81. П.П. Лазарев - создатель ионной теории возбуждения

82. П.А. Молчанов - метеоролог, создал первый в мире радиозонд

83. Н.А. Умов - физик, уравнение движения энергии, понятие потока энергии; кстати, первым объяснил практически и без эфира заблуждения теории относительности

84. Е.С. Федоров - основоположник кристаллографии

85. Г.С. Петров - химик, первое в мире синтетическое моющее средство

86. В.Ф. Петрушевский - ученый и генерал, изобрел дальномер для артиллеристов

87. И.И. Орлов - изобрел способ изготовления тканых кредитных билетов и способ однопрогонной многократной печати (орловская печать)

88. Михаил Остроградский - математик, формула О. (кратный интеграл)

89. П.Л. Чебышев - математик, многочлены Ч. (ортогональная система функций), параллелограмм

90. П.А. Черенков - физик, излучение Ч. (новый оптический эффект), счетчик Ч. (детектор ядерных излучений в ядерной физике)

91. Д.К. Чернов - точки Ч. (критические точки фазовых превращений стали)

92. В.И. Калашников - это не тот Калашников, а другой, который первым в мире оснастил речные суда паровой машиной с многократным расширением пара

93. А.В. Кирсанов - химик-органик, реакция К. (фосфозореакция)

94. А.М. Ляпунов - математик, создал теорию устойчивости, равновесия и движения механических систем с конечным числом параметров, а также теорему Л. (одна из предельных теорем теории вероятности)

95. Дмитрий Коновалов - химик, законы Коновалова (упругости парарастворов)

96. С.Н. Реформатский - химик-органик, реакция Реформатского

97. В.А.Семенников - металлург, первым в мире осуществил бессемерование медного штейна и получил черновую медь

98. И.Р. Пригожин - физик, теорема П. (термодинамика неравновесных процессов)

99. М.М. Протодьяконов - ученый, разработал общепринятую в мире шкалу крепости горных пород

100. М.Ф. Шостаковский - химик-органик, бальзам Ш. (винилин)

101. М.С. Цвет - метод Цвета (хромотография пигментов растений)

102. А.Н. Туполев - сконструировал первый в мире реактивный пассажирский самолет и первый сверхзвуковой пассажирский самолет

103. А.С. Фаминцын - физиолог растений, первым разработал метод осуществления фотосинтетических процессов при искусственном освещении

104. Б.С. Стечкин - создал две великих теории - теплового расчета авиационных двигателей и воздушно-реактивных двигателей

105. А.И. Лейпунский - физик, открыл явление передачи энергии возбужденными атомами и

Молекулами свободным электронам при столкновениях

106. Д.Д. Максутов - оптик, телескоп М. (менисковая система оптических приборов)

107. Н.А. Меншуткин - химик, открыл влияние растворителя на скорость химической реакции

108. И.И. Мечников - основоположников эволюционной эмбриологии

109. С.Н. Виноградский - открыл хемосинтез

110. В.С. Пятов - металлург, изобрел способ производства броневых плит прокатным методом

111. А.И. Бахмутский - изобрел первый в мире угольный комбайн (для добычи угля)

112. А.Н. Белозерский - открыл ДНК в высших растениях

113. С.С. Брюхоненко - физиолог, создал первый аппарат искусственного кровообращения в мире (автожектор)

114. Г.П. Георгиев - биохимик, открыл РНК в ядрах клеток животных

115. E. А. Мурзин - изобрел первый в мире оптико-электронный синтезатор «АНС»

116. П.М. Голубицкий - русский изобретатель в области телефонии

117. В. Ф. Миткевич - впервые в мире предложил применять трехфазную дугу для сварки металлов

118. Л.Н. Гобято - полковник, первый в мире миномет был изобретен в России в 1904 году

119. В.Г. Шухов - изобретатель, первым в мире применил для строительства зданий и башен стальные сетчатые оболочки

120. И.Ф.Крузенштерн и Ю.Ф.Лисянский - совершили первое русское кругосветное путешествие, изучили острова Тихого океана, описали жизнь Камчатки и о. Сахалин

121. Ф.Ф.Беллинсгаузен и М.П.Лазарев - открыли Антарктиду

122. Первый в мире ледокол современного типа - пароход русского флота «Пайлот» (1864), первый арктический ледокол - «Ермак», построен в 1899 под руководством С.О. Макарова.

123. В.Н. чев - основоположник биогеоценологии, один из основоположников учения о фитоценозе, его структуре, классификации, динамике, взаимосвязях со средой и его животным населением

124. Александр Hесмеянов, Александр Арбузов, Григорий Разуваев - создание химии элементоорганических соединений.

125. В.И. Левков - под его руководством впервые в мире были созданы аппараты на воздушной подушке

126. Г.Н. Бабакин - русский конструктор, создатель советских луноходов

127. П.Н. Нестеров - первым в мире выполнил на самолете замкнутую кривую в вертикальной плоскости, «мертвую петлю», названную впоследствии «петлей Нестерова»

128. Б. Б. Голицын - стал основателем новой науки сейсмологии

И еще многие и многие другие...

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Великие физики и их открытия. Подготовила ученица 7 «А» класса МБОУ СОШ № 1 Сыромятникова Юлия

2 слайд

Описание слайда:

Исаак Ньютон (физик) Родился: 4 января 1643 Умер: 31 марта 1727 г. (84 года) Английский физик, математик, механик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисления, теорию цвета, заложил основы современной физической оптики, создал многие другие математические и физические теории.

3 слайд

Описание слайда:

Открытия И. Ньютона Исаак Ньютон первым научно объяснил природу цветных полос, получающихся при разложении солнечного света оптической призмой. Он считал, что белый солнечный свет есть сумма световых лучей, обладающих различной силой преломления. Каждый такой световой луч вызывает присущее только ему цветовое впечатление. При прохождении белого света через стеклянные призмы он разлагается на простые цветные лучи. При прохождении через собирающую линзу разложенные призмой цветные лучи собираются и опять образуют белый свет. Наконец, пропустив цветные лучи через вторую призму, Ньютон нашел, что они далее не разлагаются. Ньютон был первым, кто расположил цвета спектра в форме круга. Он различал в спектре семь областей аналогично семи ступеням октавы. Терминология, употреблявшаяся Ньютоном для обозначения явлений цвета, была очень точной. Он говорил, например, не о красных или зеленых лучах, а о световых лучах, которые вызывают ощущение красного или зеленого цвета. Следует отметить, что после открытий Ньютона оптика начала развиваться очень быстро. Он сумел обобщить такие открытия своих предшественников, как дифракция, двойное преломление луча и определение скорости света. Но самым известным открытием Ньютона стал закон всемирного тяготения. Также он смог доказать, что силы гравитации распространяются не только на земные, но и на небесные тела. Эти законы были описаны в 1687 году после издания книги Ньютона, посвященной использованию математических методов в физике.

4 слайд

Описание слайда:

Галилео Галилей (астроном) Родился: 15 февраля 1564 г., Италия, Пиза. Умер: 8 января 1642г., (77 лет), Арчетри. Итальянский физик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий. Галилей - основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической механики. При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью.

5 слайд

Описание слайда:

Открытия Г. Галилея Первым стал использовать понятие инертность Вывел преобразования координат которые назвали его именем Доказал что вопреки тогда общепринятому мнению, что естественным состоянием тела кроме покоя является состояние равномерного прямолинейного движения Первым додумался использовать телескоп для наблюдения небесных тел(он его не изобретал) Создал более менее соответствующую модель солнечной системы

6 слайд

Описание слайда:

Альберт Эйнштейн (физик) Родился: 14 марта 1879 г. Умер: 18 апреля 1955 г. (76лет) Физик-теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии, Швейцарии и США. Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР.

7 слайд

Описание слайда:

Открытия А. Эйнштейна Увлечения физикой и математикой, постоянные исследования приводят к публикации ряда статей по статической механике, физике молекул. Наиболее известным учением Эйнштейна является теория относительности. Эта теория была развита на основе геометрической теории относительности Лобачевского. К другим величайшим открытиям ученого относят работы по фотоэффекту, броуновскому движению. Используя квантовую статистику Эйнштейн вместе с физиком Бозе открыл пятое состояние вещества, названное в их честь конденсатом Бозе-Эйнштейна.

8 слайд

Описание слайда:

Ломоносов Михаил Васильевич (российский учёный) Родился:19 ноября 1711 г., деревня Мишанинская (ныне - село Ломоносово) Умер:15 апреля 1765 г. (53 года) Первый русский учёный-естествоиспытатель мирового значения, энциклопедист, химик и физик; он вошёл в науку как первый химик, который дал физической химии определение, весьма близкое к современному, и предначертал обширную программу физико-химических исследований; его молекулярно-кинетическая теория тепла во многом предвосхитила современное представление о строении материи и многие фундаментальные законы, в числе которых одно из начал термодинамики; заложил основы науки о стекле. Астроном, приборостроитель, географ, металлург, геолог, поэт, филолог, художник, историк и генеалог, поборник развития отечественного просвещения, науки и экономики. Разработал проект Московского университета, впоследствии названного в его честь.

9 слайд

Описание слайда:

Открытия М. Ломоносова Особо Ломоносова привлекала химия и физика. Русскому учёному принадлежит первое место в мире в истории закона сохранения энергии и массы. Именно Ломоносов в 1748 году в своей новой лаборатории открыл один из основополагающих законов природы - закон сохранения материи. Опубликован этот закон был только через 12 лет. Ломоносов первым сформулировал основы кинетической теории газов, хотя сегодня многие связывают это открытие с именем Бернулли. Михаил Васильевич утверждал, что любое тело состоит из мельчайших частиц – атомов и молекул, которые при охлаждении движутся медленнее, а при нагревании – быстрее. Ломоносов открыл тайну гроз, природу северных сияний и даже смог оценить их высоту. Ему принадлежит догадка о вертикальных атмосферных течениях и оригинальная теория цветов.

10 слайд

Описание слайда:

Вавилов Николай Иванович (учёный) Родился: 25 ноября 1887 г., Москва Умер: 26 января 1943 г. (55 лет) Российский и советский учёный-генетик, ботаник, селекционер, географ, академик АН СССР, АН УССР и ВАСХНИЛ. Президент, вице-президент ВАСХНИЛ, президент Всесоюзного географического общества, основатель и бессменный до момента ареста директор Всесоюзного института растениеводства, директор Института генетики АН СССР, член Экспедиционной комиссии АН СССР, член коллегии Наркомзема СССР, член президиума Всесоюзной ассоциации востоковедения. В 1926-1935 годах член Центрального исполнительного комитета СССР, в 1927-1929 - член Всероссийского Центрального Исполнительного Комитета, член Императорского Православного Палестинского Общества.

11 слайд

Описание слайда:

Открытия Н. Вавилова Создатель учений о мировых центрах происхождения культурных растений и об иммунитете растений, закона гомологических рядов в наследственной изменчивости организмов, сети научных учреждений по биологии и смежным наукам

12 слайд

Описание слайда:

Мария Склодовская-Кюри (физик - химик) Родилась:7 ноября 1867 г., Варшава Умерла:4 июля 1934 г. (66 лет) Французский учёный-экспериментатор польского происхождения, педагог, общественный деятель. Удостоена Нобелевской премии: по физике и по химии, первый дважды нобелевский лауреат в истории. Основала Институты Кюри в Париже и в Варшаве. Жена Пьера Кюри, вместе с ним занималась исследованием радиоактивности. Совместно с мужем открыла элементы радий и полоний.

13 слайд

Описание слайда:

Открытия М. Склодовской -Кюри Мария Склодовская-Кюри выделила чистый металлический радий, доказав, что это самостоятельный химический элемент. Она получила Нобелевскую премию по химии за этого открытие и стала единственной женщиной в мире с двумя Нобелевскими премиями.

14 слайд

Описание слайда:

Блез Паскаль (физик - математик) Родился:19 июня 1623 г., Клермон-Ферран Умер:19 августа 1662 г. (39 лет) Французский математик, механик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики.

15 слайд

Описание слайда:

Открытия Б. Паскаля Двенадцать лет своей короткой жизни Паскаль отдает созданию счетной машины (1640-1652). В нее он вложил все свои знания по математике, механике, физике, талант изобретателя. По словам сестры Паскаля Жильберты, "эта работа очень утомляла брата, но не из-за напряжения умственной деятельности и не из-за механизмов, изобретение которых не вызывало у него особых усилий, а из-за того, что рабочие плохо понимали его". Паскалю нередко самому приходилось браться за напильник и молоток или ломать голову над тем, как изменить в соответствии с квалификацией мастера сложную конструкцию.