Бензол: формула. Бензол: электронное строение, свойства. Физические и химические свойства бензола

Технология производства бензола и сферы его использования

Бензол (C6H6, PhH) — ароматический углеводород. Входит в состав бензина, широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Бензол - один из наиболее распространенных химических продуктов и самое распространенное ароматическое соединение. В физическом весе пластмасс около 30%, в каучуках и резинах - 66%, в синтетических волокнах - до 80% приходится на ароматические углеводороды, родоначальником которых является бензол.
Бензол входит в состав сырой нефти, но в промышленных масштабах по большей части синтезируется из других её компонентов.

Свойства продукта и технические характеристики
Бензол - бесцветная жидкость со своеобразным нерезким запахом. Температура плавления — 5,5 °C, температура кипения — 80,1 °C, плотность — 0.879 г/см³, молекулярная масса — 78,11г/моль. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями, с водой образует смесь с температурой кипения 69,25 °C. Растворимость в воде 1.79 г/л (при 25°C). Токсичен, опасен для окружающей среды, огнеопасен.
Бензол по составу относится к ненасыщенным углеводородам (гомологический ряд CnH2n-6), но в отличие от углеводородов ряда этилена C2H4, при жёстких условиях проявляет свойства присущие насыщенным углеводородам, более склонен к реакциям замещения. Свойства бензола объясняются наличием в его структуре сопряжённого π-электронного облака.
Транспортировку бензола осуществляют в железнодорожных цистернах и автоцистернах, на баржах и в металлических бочках. Перекачивание из одного сосуда в другой происходит в закрытой системе, так как бензол ядовит.
В зависимости от технологии производства получают различные марки бензола. Бензол нефтяной получают в процессе каталитического риформинга бензиновых фракций, каталитического гидродеалкилирования толуола и ксилола, а также при пиролизе нефтяного сырья.
В зависимости от технологии производства и назначения установлены следующие марки нефтяного бензола: высшей очистки, очищенный и для синтеза. Нормы для марок регламентированы ГОСТ 9572-93.
ГОСТ 8448-61 распространяется на каменноугольный и сланцевый бензол, получаемый в процессе термической переработки каменных углей и сланцев. Выпускается двух марок: для синтеза и для нитрации.
Бензол сырой каменноугольный представляет собой смесь, содержащую 81-85% бензола, 10-16% толуола, 1-4% ксилола. Содержание примесей не регламентируются.
ГОСТ 5955-75 соответствует бензолу как химическому реактиву, применяемому в лабораториях.
Ниже приведены технические характеристики марок нефтяного и каменноугольного бензола согласно вышеперечисленным ГОСТам.

Техническая характеристика марок каменноугольного бензола

Наименование нормируемых показателей

Норма для марки
Для синтеза Для нитрации
Высший сорт 1-й сорт
Внешний вид и цвет Прозрачная жидкость, не содержащая взвешенных и осевших на дно посторонних примесей, в т.ч. и воды, не темнее цвета раствора 0.003 г K 2 Cr 2 O 7 в 1 дм 3 .
Плотность при 20С (г/см 3) 0,877-0,880 0,877-0,880 0,877-0,880
Пределы перегонки: 95% объема от начала кипения перегоняется в интервале температур С, не более (включая температуру кипения чистого бензола 80,1С) 0,6 0,6 0,7
Температура кристаллизации (С, не ниже) 5,3 5,3 5,2
Массовая доля примесей (%, не более):
Н/гептана - - -
Метилциклогексана + толуола - - -
Окраска серной кислоты (номер образцовой шкалы, не более) 0,1 0,1 0,15
Бромное число (г/100см 3 бензола, не более) - - 0,06
Массовая доля (%, не более):
Сероуглерода 0,00007 0,0001 0,005
Тиофена 0,0002 0,0004 0,02
Сероводорода и меркаптанов - - Отсутствие
Общей серы 0,0001 0,00015 0,015
Испытание на медной пластинке Выдерживает
Реакция водной вытяжки Нейтральная

Техническая характеристика марок нефтяного бензола


Наименование показателя

Норма для марки
высшей очистки очищенный для синтеза
ОКП 24 1411 0120 ОКП 24 1411 0130 ОКП 24 1411 0200
высшего сорта первого сорта
ОКП 24 1411 0220 ОКП 24 1411 0230
1. Внешний вид и цвет Прозрачная жидкость, не содержащая посторонних примесей и воды, не темнее раствора 0,003 К 2 Cr 2 О 7 в 1 дм 3 воды
2. Плотность при 20 °С, г/см 3 0,878-0,880 0,878-0,880 0,878-0,880 0,878-0,880
3. Пределы перегонки 95 %, °С, не более (включая температуру кипения чистого бензола 80,1 °С) - - 0,6 0,6
4. Температура кристаллизации, °С, не ниже: 5,4 5,4 5,35 5,3
5. Массовая доля основного вещества, %, не менее: 99,9 99,8 99,7 99,5
6. Массовая доля примесей, %, не более:
н-гептана 0,01 0,06 0,06 -
метилциклогексана и толуола 0,05 0,09 0,13 -
метилциклопентана 0,02 0,04 0,08 -
толуола - 0,03 - -
7. Окраска серной кислоты, номер образцовой шкалы, не более: 0,1 0,1 0,1 0,15
8. Массовая доля общей серы, %, не более: 0,00005 0,0001 0,0001 0,00015
9. Реакция водной вытяжки Нейтральная

Области применения бензола

Бензол - один из наиболее распространенных химических продуктов и самое распространенное ароматическое соединение. В физическом весе пластмасс около 30%, в каучуках и резинах - 66%, в синтетических волокнах - до 80% приходится на ароматические углеводороды, родоначальником которых является бензол.
Основные области применения бензола - производство этилбензола, кумола и циклогексана. На долю этих продуктов приходится около 70% мирового потребления бензола. Этилбензол является важным нефтехимическим продуктом, основной объем которого используются для производства стирола. Наиболее значимыми продуктами, в производстве которых используется фенол, является бисфенол-А и фенолформальдегидные смолы. Циклогексан используется в качестве сырья для получения капролактама, растворителя. Капролактам в свою очередь применяется для производства термопластичных смол (полиамид 6), капроновых волокон и нитей. Нитробензол является полупродуктом для получения анилина.
Бензол также используется для получения анилина, малеинового ангидрида, является сырьем для производства синтетических волокон, каучуков, пластмасс. Бензол применяется как компонент моторного топлива для повышения октанового числа, как растворитель и экстрагент в производстве лаков, красок, поверхностно-активных веществ.
Более подробно области применения бензола рассмотрены в главе 5.

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА

Историческая справка

Впервые бензол описал немецкий химик Иоганн Глаубер, который получил это соединение в 1649 году в результате перегонки каменноугольной смолы. Но ни названия вещество не получило, ни состав его не был известен.
Своё второе рождение бензол получил благодаря работам английского физика Майкла Фарадея, который в 1825 году выделил его из жидкого конденсата светильного газа. Великое открытие Фарадея было сделано случайно. В начале девятнадцатого века в Лондоне для уличного освещения стали использовать светильный газ, получаемый из каменноугольной смолы. Однако он имел ряд существенных недостатков: при его горении не только выделялось большое количество дыма, чем были весьма недовольны жители туманного Альбиона, но и со временем этот газ утрачивал свою горючесть, а на дне баллонов оседала неизвестная маслянистая жидкость. Этой проблемой, исключительно из практических соображений, и занялся Майкл Фарадей. Результатом множества разнообразных испытаний стала белая кристаллическая масса, получаемая вымораживанием остатка «светильного газа» при температуре 7 °С.
В 1833 году немецкий физик и химик Эйльгард Мичерлих получил бензол при сухой перегонке кальциевой соли бензойной кислоты (именно от этого и произошло название бензол).
Современное представление о свойствах и электронной природе связей в бензоле основывается на гипотезе Лайнуса Полинга, который предложил изображать молекулу бензола в виде шестиугольника с вписанной окружностью, подчёркивая тем самым отсутствие фиксированных двойных саязей и наличие единого электронного облака, охватывающего все шесть атомов углерода цикла.
В XIX веке коммерческая ценность бензола была ограниченной. Он применялся в первую очередь как растворитель. В XX столетии производители бензина обнаружили у бензола ряд свойств, позволяющих использовать его в качестве компонента автомобильного топлива (высокое октановое число). Как следствие, возник экономический стимул для более полного выделения бензола, который получали как побочный продукт при коксовании в производстве стали. Начало Второй мировой войны выявило и другие - химические - области применения бензола, в основном в производстве взрывчатых веществ. В результате, в середине XX века не только бензол коксования стал направлять в химическую промышленность (а не использоваться как компонент бензина), но и сама нефтеперерабатывающая промышленность начала производить огромное количество бензола для обеспечения потребностей химической индустрии. Так, крупнейший потребитель бензола - нефтяная индустрия - стал его главным производителем.
Постоянно возрастающие потребности нефтехимической промышленности в бензоле привели к появлению новых, усовершенствованных процессов его производства - каталитического риформинга, деалкилирования толуола, а также более нового - диспропорционирования толуола.
Случайный вклад в развитие отрасли был сделан в 1970-е годы, когда заводы по производству олефинов начали использовать тяжелый газойль как сырье и получать бензол в качестве побочного продукта.

Промышленные методы производства бензола

Производство бензола основано на переработке целого ряда сырьевых компонентов: нафты, толуола, тяжелой фракции пиролиза, смолы коксования угля, поэтому выпуск бензола ведется как на предприятиях нефтехимии, так и на металлургических заводах. В зависимости от технологии получения и назначения бензол подразделяют на бензол нефтяной и каменноугольный «высшей очистки», «для синтеза», «высшего сорта», «первого сорта», «для нитрации», «технический», «сырой».
Наиболее старый метод промышленного получения бензола - выделение его из предварительно охлажденных пирогазовых продуктов коксования каменных углей абсорбцией органическими поглотителями, например маслами каменно-угольного и нефтяного происхождения; для отделения поглотителя используют перегонку с водяным паром. От примесей (например, тиофена) сырой бензол отделяют гидроочисткой.
Основное количество бензола получают каталитическим риформингом (470-550°С) нефтяной фракции, выкипающей при 62-85°С. Бензол высокой чистоты получают экстрактивной перегонкой с диметилформамидом.
Бензол выделяют и из жидких продуктов пиролиза нефтепродуктов, образующихся в производствах этилена и пропилена. Этот способ является более выгодным экономически, поскольку в образующейся смеси продуктов на долю бензола приходится около 40% против 3% при риформинге. Однако сырьевые ресурсы для этого способа весьма ограничены, поэтому большую часть бензола производят риформингом. Доля коксохимического бензола в общем балансе невелика.

Состав смесей, образующихся в результате пиролиза и риформинга нефтяного сырья

Источник: Евразийский химический рынок

При избытке ресурсов толуола бензол производят также деалкилированием последнего, которое проводят термическим способом при 600-820°С в присутствии водорода и водяного пара или каталитически при 227-627°С в присутствии цеолитов или оксидных катализаторов.

Получение бензола из каменноугольного сырья
Для получения кокса на металлургических предприятиях используют сухую перегонку каменного угля, который представляет собой в основном смесь полиядерных ароматических соединений с высокой молекулярной массой. В процессе сухой перегонки каменный уголь нагревают без доступа воздуха до 1200-1500ºС. Из 1 тонны угля можно получить около 680 кг кокса и 227 кг каменноугольного газа, каменноугольной смолы и каменноугольного масла. Каменноугольное масло (сырой бензол) - это смесь бензола (63%), толуола (14%) и ксилолов (7%).
Для коксохимического бензола необходима более глубокая очистка от ненасыщенных углеводородов, особенно от н-гептана и метилциклогексана. Коксохимический бензол подвергается ректификации трижды: при отборе сероуглеродной фракции, перегонке очищенной фракции БТК - получение бензола «для нитрации» - и окончательном выделении бензола после дополнительной очистки - получение бензола высших марок.
Получение бензола коксованием угля является традиционным и наиболее старым способом, однако в 1950-е годы он стал терять актуальность, так как рынок бензола стал расти существенно быстрее, чем рынок стали и проявилось производство бензола на основе переработки нефти.
Так, США - в силу особенностей природных условий быстро переориентировались на производство бензола из нефтяного сырья, как более дешевого. И когда в 1960 году в Западной Европе даже не задумывались о получении ароматических соединений из сырой нефти, в США уже 83% этих веществ получали именно из нее. К 1990 году США полностью отказались от использования каменноугольного сырья в производстве ароматики, а в Западной Европе к этому времени из нефти получали 93% бензола и его гомологов. В настоящее время в Европе существует только четыре производства бензола, работающих на каменноугольном сырье: в Германии, Польше, Чехии и Бельгии.
Производство бензола в России еще тесно связано с конъюнктурой рынка металлов, основная часть которых перерабатывается на 10 имеющихся предприятиях.

Получение бензола каталитическом риформингом нефтяных фракций
Содержание бензола в сырой нефти составляет обычно не более 0,5-1,0%. Этого недостаточно, для того чтобы оправдать затраты на оборудование необходимое для выделения бензола из сырой нефти. Гораздо более важным и коммерчески выгодным источником получения бензола является процесс каталитического риформинга, на долю которого приходится большая часть производимого в мире бензола.
Каталитический риформинг предназначен для повышения октанового числа прямогонных бензиновых фракций путём химического превращения углеводородов, входящих в их состав, до 92-100 пунктов. Процесс ведётся в присутствии алюмо-платино-рениевого катализатора. Повышение октанового числа происходит за счёт увеличения доли ароматических углеводородов. Продукты, полученные в результате риформинга узких бензиновых фракций, подвергаются разгонке с получением бензола, толуола и смеси ксилолов.
Сырьем для каталитического риформинга служит тяжелая бензиновая фракция (нафта, или лигроин) - смесь парафинов, нафтенов и ароматических углеводородов фракции С6-С9. В ходе каталитического риформинга состав нафты меняется следующим образом:
- парафины превращаются в изопарафины,
- парафины превращаются в нафтены,
- нафтены превращаются в ароматические углеводороды, включая бензол.
Также образуются побочные продукты:
- парафины и нафтены могут распадаться с образование бутана и более легких газов,
- боковые звенья ароматических соединений и нафтенов могут отщепляться и также давать бутан и более легкие газы.
Оба побочных процесса приводят к понижению октанового числа и снижению экономических показателей.
Мощность установок риформинга составляет от 300 до 1000 тыс. тонн и более в год по сырью. Оптимальным сырьём является тяжёлая бензиновая фракция с интервалами кипения 85-180°С. Сырьё подвергается предварительной гидроочистке - удалению сернистых и азотистых соединений, даже в незначительных количествах необратимо отравляющих катализатор риформинга.
Установки риформинга существуют 2-х основных типов - с периодической и непрерывной регенерацией катализатора - восстановлением его первоначальной активности, которая снижается в процессе эксплуатации. В России для повышения октанового числа в основном применяются установки с периодической регенерацией, но в 2000-х гг. в Кстово и Ярославле введены установки и с непрерывной регенерацией, которые эффективнее технологически, однако, стоимость их строительства выше.
Процесс осуществляется при температуре 500-530°С и давлении 18-35 атм (2-3 атм на установках с непрерывной регенерацией). Основные реакции риформинга поглощают существенные количества тепла, поэтому процесс ведется последовательно в 3-4 отдельных реакторах, объёмом от 40 до 140 м3, перед каждым из которых продукты подвергаются нагреву в трубчатых печах. Наличие нескольких реакторов позволяет поддерживать различные рабочие условия. В каждом из реакторов проходит одна из реакций, перечисленных выше. Выходящая из последнего реактора смесь отделяется от водорода, углеводородных газов и стабилизируется. Полученный продукт - стабильный риформат - охлаждается и выводится с установки.
При регенерации осуществляется выжиг образующегося в ходе эксплуатации катализатора кокса с поверхности катализатора с последующим восстановлением водородом и ряд других технологических операций. На установках с непрерывной регенерацией катализатор движется по реакторам, расположенным друг над другом, затем подаётся на блок регенерации, после чего возвращается в процесс.
Продукты, полученные в результате риформинга узких бензиновых фракций, подвергаются разгонке с получением бензола, толуола и смеси ксилолов - центральную фракцию, кипящую в узком интервале температур. Для итогового выделения бензола используют один из двух процессов: извлечение растворителем или экстрактивную перегонку.
Выход бензола на установках каталитического риформинга зависит от состава сырья. Нафта различается по содержанию парафинов, нафтенов и ароматики (углеводороды группы ПНА). Высокое содержание нафтенов и ароматических веществ - признак хорошего сырья для риформинга, а высокое содержание парафинов означает, что это сырье лучше использовать для промышленного получения олефинов.
Выход бензола также зависит условий проведения процесса, которые определяются экономическими соображениями.

Получение бензола из смолы пиролиза
Наиболее экономически выгодным является метод выделения бензола из жидких продуктов пиролиза нефтепродуктов, образующихся в производстве этилена и пропилена.
Производство бензола по данной технологии напрямую зависит от производства олефинов, сырья для производства олефинов и рынка смолы пиролиза (пироконденсата), который является весьма ограниченным.
Выделение бензола из пироконденсата заключается в гидроочистке соответствующей фракции продуктов пиролиза от непредельных и сернистых соединений, последующем гидродеалкилировании полученной смеси, содержащей бензол, толуол и ксилолы и последующей доочистке полученного бензола. Разделение БТК-фракции с получением бензола проводят экстракцией растворителем или экстрактивной перегонкой. Наиболее часто применяется экстракция смесью N-метилпирролидона с этиленгликолем. Также в качестве экстрагентов применяют гликоли, сульфолан, диметилсульфоксид и др. растворители.

Получение бензола гидродеалкилированием толуола
В процессе гидродеалкилирования (дезалкилирования) толуол смешивают с потоком водорода, нагревают и подают в реактор. Метильная группа отщепляется при прохождении толуола через слой катализатора с образованием бензола. Поток, выходящий из реактора, фракционируют на водород, метан и другие легкие газы и бензол. Бензол, как правило, очищают контактно-земляным методом. Полученный продукт представляет собой чистый бензол (марки «для нитрования»). Выход бензола на установке гидродеалкилирования толуола достигает 96-98%.

Материальный баланс процесса гидродеалкилирования толуола

Получение бензола диспропорционированием толуола
В течение последних 15 лет спрос на бензол и ксилолы начал значительно опережать спрос на толуол. В результате был разработан технологический процесс диспропорционирования толуола, позволяющий повысить объем производства этих продуктов.
При диспропорционировании толуола происходит восстановаление до бензола с потерей метильной группы (т.е. гидродеалкилирование) и окисление до ксилола, так как метильная группа присоединяется к другой молекуле толуола (переалкилирование). Катализаторами процесса служат платина и палладий, редкоземельные металлы и неодим, нанесенные на оксид алюминия, а также хром, нанесенный на алюмосиликат.
Толуол подается в реактор, где находится неподвижный слой катализатора. В реактор также вводят некоторое количество водорода для подавления осаждения углеводородов на поверхности катализатора. Режим работы реактора - температура 650-950ºС и давление 10,5-35 атм. Поток, выходящий из реактора, охлаждают, из него извлекают водород на рецикл. Остальную смесь трижды перегоняют с выделением на первой стадии неароматических соединений, на второй - бензола, на третьей - ксилолов.

Материальный баланс процесса диспропорционирования толуола

Как показывает материальный баланс процесса, выход продуктов за одну стадию довольно высок. При экономической обоснованности получения бензола из толуола, выбор между процессами гидродеалкилирования и диспропорционирования зависит от других экономических соображений, в частности от необходимого конечного состава продуктов.

Области применения бензола
Спрос на бензол определяется развитием потребляющих его отраслей. Основные области применения бензола - производство этилбензола, кумола и циклогексана и анилина.
Этилбензол является важным нефтехимическим продуктом, основной объем которого используются для производства стирола. Более 65 % производимого стирола в свою очередь используется для производства полистирола. Оставшаяся часть используется в производстве акрилонитрил-бутадиен-стирола (АБС) и стирол-акрилонитрила (САН), ненасыщенных полиэфиров и стирол-бутадиенового каучука.
Основной сферой применения фенола является химическая промышленность. Наиболее значимыми продуктами, в производстве которых используется фенол, является бисфенол-А и фенолформальдегидные смолы. Фенол также используется в производстве синтетического волокна капрона, красителей, пестицидов, лекарственных препаратов (аспирин, салол). Разбавленные водные растворы фенола (карболка, 5%) применяют для дезинфекции помещений, белья.
Циклогексан используется в качестве сырья для получения капролактама, растворителя. Капролактам в свою очередь применяется для производства термопластичных смол (полиамид 6), капроновых волокон и нитей.
Нитробензол является полупродуктом для получения анилина, который используется для производства метилдиизоцианатов, из которых получают полиуретаны. Анилин также используется при производстве искусственных каучуков, гербицидов и красителей.
Бензол также используется для получения малеинового ангидрида, является сырьем для производства синтетических волокон, каучуков, пластмасс. Применяется как компонент моторного топлива для повышения октанового числа, как растворитель и экстрагент в производстве лаков, красок, поверхностно-активных веществ.
Схематично основные синтезы на основе бензола можно представить следующим образом:

Схема основных синтезов на основе бензола

Применение продуктов переработки бензола
Продукт Химическая формула Применение
Стирол Основная сфера применения - производство полистирола.
Фенол Применяют в производстве бисфенола-А, фенолформальдегидных пластмасс, синтетического волокна капрона, красителей, пестицидов, лекарственных препаратов (аспирин, салол). Разбавленные водные растворы фенола (карболка, 5%) применяют для дезинфекции помещений, белья.
Капролактам Является основным сырьем для получения полиамида-6 (нейлон, капрон, ультрамид).
Анилин Применяется в качестве полупродукта в производствеполиуретанов, красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты).
Малеиновый ангидрид Применяется для получения полимерных материалов, алкидных и полимерных смол, в производстве синтетических волокон, моющих средств, фармацевтических препаратов, присадок и стабилизаторов топлива, фумаровой и яблочных кислот, сельскохозяйственных препаратов
Алкилбензолы

В молекулах которых содержится бензольное кольцо, или ядро, - циклическая группа атомов углерода с особым характером связей.

Простейшим представителем аренов является бензол C 6 H 6 . Гомологический ряд бензола имеет общую формулу C n H 2n -6 .

Первую структурную формулу бензола предложил в 1865 г. немецкий химик Ф.А. Кекуле:

Атомы С в молекуле бензола образуют правильный плоский шестиугольник, хотя часто его рисуют вытянутым.

Приведенная формула правильно отражает равноценность шести атомов С, однако не объясняет ряд особых свойств бензола. Например, несмотря на ненасыщенность, он не проявляет склонности к реакциям присоединения: не обесцвечивает бромную воду и раствор перманганата калия, т.е. ему не свойственны типичные для непредельных соединений качественные реакции.

В структурной формуле Кекуле - три одинарные и три двойные чередующиеся углерод-углеродные связи. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны. Это объясняется электронным строением его молекулы.

Каждый атом С в молекуле бензола находится в состоянии sp 2 -гибридизации. Он связан с двумя соседними атомами С и атомом Н тремя -связями. В результате образуется плоский шестиугольник, где все шесть атомов С и все -связи С-С и С-Н лежат в одной плоскости (угол между связями С-С равен 120 o). Третья p -орбиталь атома углерода не участвует в гибридизации. Она имеет форму гантели и ориентирована перпендикулярно плоскости бензольного кольца. Такие p -орбитали соседних атомов С перекрываются над и под плоскостью кольца. В результате шесть p -электронов (всех шести атомов С) образуют общее -электронное облако и единую химическую связь для всех атомов С.

Электронное облако обусловливает сокращение расстояния между атомами С. В молекуле бензола они одинаковы и равны. Значит, в молекуле бензола нет чередования простых и двойных связей, а существует особая связь - “полуторная” - промежуточная между простой и двойной, так называемая ароматическая связь. Чтобы показать равномерное распределение p-электронного облака в молекуле бензола, корректнее изображать ее в виде правильного шестиугольника с окружностью внутри (окружность символизирует равноценность связей между атомами С) .

Однако часто пользуются и формулой Кекуле с указанием двойных связей (II), помня, однако, о ее недостатках:

Физические свойства. Бензол - бесцветная, летучая, огнеопасная жидкость со своеобразным запахом. В воде практически нерастворим, но служит хорошим растворителем для многих органических веществ. Горит сильно коптящим пламенем (92,3 % массы приходится на углерод). Пары бензола с воздухом образуют взрывчатую смесь. Жидкий бензол и пары бензола ядовиты. Температура кипения бензола 80,1 °С. При охлаждении он легко застывает в белую кристаллическую массу с температурой плавления 5,5 °С.


Химические свойства. Ядро бензола обладает большой прочностью. Этим и объясняется склонность аренов к реакциям замещения. Они протекают легче, чем у предельных углеводородов.

Реакция замещения (ионный механизм).

1) Гидрирование . Бензол присоединяет водород при низкой температуре в присутствии катализатора - никеля или платины, образуя циклогексан:

2) Галогенирование. Бензол при ультрафиолетовом облучении присоединяет хлор, образуя гексахлорциклогексан (гексахлоран):

Реакции окисления .

1) Бензол очень устойчив к окислителям. В отличие от непредельных углеводородов он не обесцвечивает бромную воду и раствор KMnO 4 .

2) Бензол на воздухе горит коптящим пламенем:

2C 6 H 6 + 15O 2 12CO 2 + 6H 2 O.

Арены, таким образом, могут вступать как в реакции замещения, так и в реакции присоединения, однако условия этих превращений значительно отличаются от аналогичных превращений предельных и непредельных углеводородов. Эти реакции бензола внешне схожи с реакциями алканов и алкенов, но протекают по другим механизмам.

БЕНЗОЛ, простейший представитель ароматических углеводородов, С 6 Н 6 . Был открыт в 1825 М. Фарадеем, который выделил бензол из жидкого конденсата светильного газа; в чистом виде получен в 1833 году Э. Митчерлихом пиролизом кальциевой соли бензойной кислоты. В 1865 году Ф. А. Кекуле предложил формулу строения бензола с чередующимися простыми и двойными связями.

Бензол - бесцветная жидкость с нерезким запахом; t пл 5,53 °С, t кип 80,1 °С. Практически нерастворим в воде, смешивается во всех соотношениях с большинством неполярных органических растворителей; растворяет жиры, каучуки, смолы; с водой и спиртами образует азеотропные смеси. В молекуле бензола атомы углерода, находящиеся в состоянии sp 2 -гибридизации, образуют плоский, правильный шестиугольник с расстоянием между атомами углерода 139 пм, причём все атомы цикла участвуют в образовании единой π-электронной системы. Молекула бензола удовлетворяет всем критериям ароматичности.

Бензол обладает химическими свойствами ароматических соединений. При нитровании бензола смесью концентрированной HNO 3 и Н 2 SO 4 образуется нитробензол, который может быть восстановлен в анилин. Бензол сульфируют концентрированной Н 2 SO 4 до бензолсульфокислот; алкилируют алкилгалогенидами до алкилбензолов и ацилируют (в присутствии катализатора AlСl 3) хлорангидридами карбоновых кислот до жирноароматических кетонов (смотри в статье Фриделя - Крафтса реакция). При алкилировании бензола этиленом образуется этилбензол, из которого в промышленности получают стирол; аналогично из бензола и пропилена образуется кумол - исходный продукт для получения фенола и ацетона. При окислении бензола кислородом воздуха при нагревании в присутствии катализатора получают малеиновый ангидрид. Бензол с трудом вступает в реакции присоединения. Так, только при фотохимическом хлорировании бензола образуется гексахлорциклогексан, используемый в качестве инсектицида. При каталитическом гидрировании бензол превращается в циклогексан - исходный продукт в производстве ε-капролактама.

Бензол содержится в коксовом газе, образующемся при пиролизе каменного угля. Основное количество бензола получают риформингом при 470-540 °С нефтяной фракции, выкипающей при 62-85 °С. Бензол - важнейшее сырьё химической промышленности, его применяют в производстве взрывчатых, душистых, лекарственных веществ, пестицидов, красителей, полимерных материалов, а также как растворитель и экстрагент в производстве лаков, красок и др.

Смеси бензола с воздухом (1,5-8% бензола по объёму) взрывоопасны. Бензол токсичен, может вызывать острые и хронические отравления.

Лит.: Соколов В. 3., Харлампович Г. Д. Производство и использование ароматических углеводородов. М., 1980; Общая органическая химия. М., 1981. Т. 1; Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. 4-е изд. М., 1988.

Ароматические углеводороды составляют важную часть циклического ряда органических соединений. Простейшим представителем таких углеводородов является бензол. Формула этого вещества не только выделила его из ряда остальных углеводородов, но и дала толчок в развитии нового направления органической химии.

Открытие ароматических углеводородов

Ароматические углеводороды были открыты в начале 19 века. В те времена наиболее распространенным топливом для уличного освещения являлся светильный газ. Из его конденсата великий английский физик Майкл Фарадей выделил в 1825 году три грамма маслянистого вещества, подробно описал его свойства и назвал так: карбюрированный водород. В 1834 году немецкий ученый, химик Митчерлих, нагревая бензойную кислоту с известью, получил бензол. Формула, по которой протекала данная реакция, представлена ниже:

C6 H5 COOH + CaO сплавление C6 H6 + CaCO3.

В то время редкую бензойную кислоту получали из смолы бензое, которую могут выделять некоторые тропические растения. В 1845 году новое соединение было обнаружено в каменноугольной смоле, которая являлась вполне доступным сырьем для получения нового вещества в промышленных масштабах. Другим источником бензола является нефть, полученная в некоторых месторождениях. Чтобы обеспечить потребность промышленных предприятий в бензоле, его получают также путем ароматизации некоторых групп ациклических углеводородов нефти.

Современный вариант названия предложил немецких ученый Либих. Корень слова «бензол» следует искать в арабских языках - там оно переводится как «ладан».

Физические свойства бензола

Бензол является бесцветной жидкостью со специфическим запахом. Это вещество кипит при температуре 80,1 о С, отвердевает при 5,5 о С и превращается при этом в белый кристаллический порошок. Бензол практически не проводит тепло и электричество, плохо растворяется в воде и хорошо - в различных маслах. Ароматические свойства бензола отражают суть структуры его внутреннего строения: относительно устойчивое бензольное ядро и неопределенный состав.

Химическая классификация бензола

Бензол и его гомологи - толуол и этилбензол - представляют собой ароматический ряд циклических углеводородов. Строение каждого из этих веществ содержит распространенную структуру, названную бензоловым кольцом. Структура каждого из вышеперечисленных веществ содержит особую циклическую группировку, созданную шестью атомами углерода. Она получила название бензольного ароматического ядра.

История открытия

Установление внутреннего строения бензола растянулось на несколько десятилетий. Основные принципы строения (кольцевая модель) были предложены в 1865 году химиком А. Кекуле. Как рассказывает легенда, немецкий ученый увидел формулу этого элемента во сне. Позднее было предложено упрощенное написание структуры вещества, называемого так: бензол. Формула этого вещества представляет собой шестиугольник. Символы углерода и водорода, которые должны быть расположены в углах шестиугольника, опускаются. Таким образом, получается простой правильный шестиугольник с чередующимися одинарными и двойными линиями на сторонах. Общая формула бензола представлена на рисунке ниже.

Ароматические углеводороды и бензол

Химическая формула этого элемента позволяет утверждать, что для бензола реакции присоединения нехарактерны. Для него, как и для других элементов ароматического ряда, типичны реакции замещения атомов водорода в бензольном кольце.

Реакция сульфирования

При обеспечения взаимодействия концентрированной серной кислоты и бензола, повышая температуру реакции, можно получить бензосульфокислоту и воду. Структурная формула бензола в этой реакции выглядит следующим образом:

Реакция галогенирования

Бром или хром в присутствии катализатора взаимодействует с бензолом. При этом получаются галогенопроизводные. А вот реакция нитрирования проходит с использованием концентрированной азотной кислоты. Конечным итогом реакции является азотистое соединение:

С помощью нитрирования получают известное всем взрывчатое вещество - тротил, или тринитотолуол. Мало кто знает, что в основе тола лежит бензол. Многие другие нитросоединения на основе бензольного кольца также могут быть использованы как взрывчатые вещества

Электронная формула бензола

Стандартная формула бензольного кольца не совсем точно отражает внутренне строение бензола. Согласно ей, бензол должен обладать тремя локализованными п-связями, каждая из которых должна взаимодействовать с двумя атомами углерода. Но, как показывает опыт, бензол не обладает обычными двойными связями. Молекулярная формула бензола позволяет увидеть, что все связи в бензольном кольце равноценны. Каждая из них имеет длину около 0,140 нм, что является промежуточным значением между длиной стандартной простой связи (0,154 нм) и двойной этиленовой связи (0,134 нм). Структурная формула бензола, изображенная с чередованием связей, несовершенна. Более правдоподобна трехмерная модель бензола, которая выглядит так, как показано на картинке ниже.

Каждый из атомов бензольного кольца находится в состоянии sp 2 -гибридизации. Он затрачивает на образование сигма-связей по три валентных электрона. Эти электроны охватывают два соседних атома углевода и один атом водорода. При этом и электроны, и связи С-С, Н-Н находятся в одной плоскости.

Четвертый валентный электрон образует облако в форме объемной восьмерки, расположенное перпендикулярно плоскости бензольного кольца. Каждое такое электронное облако перекрывается над плоскостью бензольного кольца и непосредственно под ней с облаками двух соседних атомов углерода.

Плотность облаков п-электронов этого вещества равномерно распределена между всеми углеродными связями. Таким путем образуется единое кольцевое электронное облако. В общей химии такая структура получила название ароматического электронного секстета.

Равноценность внутренних связей бензола

Именно равноценностью всех граней шестиугольника объясняется выравненность ароматических связей, обуславливающих характерные химические и физические свойства, которыми обладает бензол. Формула равномерного распределения п-электронного облака и равноценность всех его внутренних связей показана ниже.

Как видно, вместо чередующихся одинарных и двойных черт внутреннюю структуру изображают в виде окружности.

Сущность внутренней структуры бензола дает ключ к пониманию внутреннего строения циклических углеводородов и расширяет возможности практического применения этих веществ.

. Бензол играет чрезвычайно важную роль в разнообразных отраслях хим. промышленности. Впервые бензол был открыт в легких фракциях каменноугольного дегтя Фарадеем в 1825 г. Особенные свойства бензола и его производных нашли свое выражение в формуле строения, предложенной в 1865 г. Кекуле, в виде замкнутой цепи из шести углеродных атомов, при которых имеется по одному атому водорода. Однако такое строение не вполне согласуется со свойствами различных веществ, получающихся из бензола, и потому с течением времени различными исследователями в формулу строения бензола были внесены некоторые видоизменения, касающиеся гл. обр. распределения сил сродства внутри углеродного цикла. Главным источником добывания бензола служат продукты, получающиеся при переработке каменного угля на кокс и светильный газ. В последнее время были сделаны попытки получения бензола из нефти путем ее пирогенетического разложения, но они не привели еще к выработке достаточно рентабельных способов. Из газов коксовых печей, которые содержат главную массу бензола, он извлекается различными растворителями или адсорбируется твердыми телами. Обычно для растворения применяют фракцию каменноугольного дегтя, которая в пределах 200-300° дает не менее 80% дистиллята; иногда вместо каменноугольного масла применяют погоны нефти, известные под названием солярового масла. При хорошем масле можно извлечь из газа до 98% всего заключающегося в нем бензола.

Коксовый газ, пройдя через холодильники, смолоотделители и аммиачные промыватели, имея температуру не выше 20°, поступает в скруббера, где промывается поглотительным маслом, растворяющим бензол. Скруббера представляют собой высокие круглые башни, внутри которых делается насадка, способствующая более тесному перемешиванию газа с поглотительным маслом. Масло, насыщенное бензолом с содержанием последнего около 3%, поступает на регенерацию в колонные аппараты, где отгоняется так называемый сырой бензол, имеющий до 65% чистого бензола. Масло, освобожденное от бензола, охлаждается и идет снова на скруббера для промывания газа. Сырой бензол содержит большое число различных углеродистых соединений и неодинаков по составу. Колебания в составе в зависимости от характера производства видны из следующей таблицы:

Кроме указанных веществ, в состав сырого бензола входят также нафталин, кумол, тиотолен, фенол, крезолы, пиридин, кумароны. На заводах Донбасса содержание чистого бензола в сыром продукте в среднем составляет около 52%. Для получения чистого бензола сырой продукт подвергается очистке и ректификации. Первая ректификация дает 90%-ный бензол, который затем поступает на очистку и дальнейшую ректификацию для получения чистого бензола. Очистка заключается в последовательном промывании бензола раствором щелочи, кислоты и водой. Если бензол содержит основания и фенолы, то сначала его промывают разбавленной серной кислотой, чем достигается удаление оснований, а щелочь затем растворяет все кислые вещества. Сероуглерод, тиофен, ненасыщенные алифатические углеводороды удаляются обработкой крепкой серной кислотой 60-66° Вè, которая сульфирует и осмоляет все непредельные и сернистые соединения, переводя их в растворимые и легко вымываемые щелочью вещества. Очистка производится в особых аппаратах - мешалках, снабженных внутри приспособлениями для механического перемешивания жидкости, чтобы обеспечить возможно быструю и полную очистку. Бензол, освобожденный от примесей и сернистых соединений (для этой цели приходится прибегать к повторной обработке кислотой), поступает на окончательную ректификацию для получения чистого продукта. Совершенно чистый бензол - бесцветная, прозрачная, легко подвижная, очень горючая жидкость, которая затвердевает при 5,483° (по водородному термометру) и кипит при 80,08° (760 мм Hg). Удельный вес бензола D 25 = 0,87345, D 4 15,5 = 0,8845, он изменяется с температурой; по Коппу, v t =1+0,001171626t+0,00000127755t 2 +0,00000080648t 3 . Коэффициент лучепреломления n D 8,2 = 1,50808. Удельный объем при 20° - 0,67171. Удельная теплота чистого бензола, по Треену (Тгehin) при 16,2° - 0,402, 20,2° - 0,412, 30,0° - 0,419, 42,8° - 0,429, 50,4° - 0,437, 58,1°- 0,449; удельная теплота продажного бензола, очищенного вымораживанием, при 18,3° - 0,414, 22,7° - 0,418, 31,8° - 0,425, 40,3° - 0,439; 52,0° - 0,452.

Теплота горения при постоянном объеме 10,014 Cal. Бензол при 22° растворим в воде в количестве 0,082 объема на 100 объемов воды. Вода растворяется в бензоле в зависимости от температуры следующим образом (в %%):

Бензол является превосходным растворителем жиров, смол, каучука и других органических соединений.

Химические свойства . Бензол трудно реагирует с веществами, которые вступают во взаимодействие с этиленом и его производными. В присутствии катализаторов - никеля, палладия или платины - бензол присоединяет 6 атомов водорода и переходит в гексогидробензол или гексаметилен. Водородные атомы бензола могут быть заменены галоидами с образованием соответствующих галоидопроизводных. Крепкие серная и азотная кислоты при действии на бензол дают соответствующие сульфо-и нитропроизводные. Рыночные сорта бензола обычно не являются чистым бензолом, а содержат еще толуол и ксилол в различных количествах. По Крамеру и Шпилькеру, различают следующие сорта продажного бензола (в зависимости от %-ного содержания в нем веществ, отгоняющихся до 100°):

Области применения бензола весьма разнообразны. Большие количества бензола в настоящее время идут как примесь к моторному бензину, что значительно улучшает качество последнего. В Англии National Benzol Association предъявляет к моторному бензолу следующие требования: удельный вес 0,870-0,885; при перегонке бензол должен давать до 100° - 75%, 120° - 90%, 125° - 100%; содержание в нем серы не должно превышать 0,4%; бензол не должен содержать воды; степень очистки: при встряхивании 90 см 3 бензола с 10 см 3 90%-ной H 2 SО 4 в течение 5 минут кислота должна окраситься в цвет не темнее светло-коричневого; бензол не должен содержать кислот, щелочей и сероводорода; должен замерзать не ниже -14°.

Бензол применяют в качестве растворителя и для целей экстракции в различных производствах: для приготовления лаков и линолеума, для обезжиривания костей, для экстракции воска и канифоли , для химической чистки различных материалов. Бензол является одним из наиболее употребительных растворителей на резиновых фабриках. Он служит также исходным материалом для приготовления красителей, взрывчатых и душистых веществ, фармацевтических и фотографических препаратов. Огромные количества бензола перерабатываются на нитро- и динитробензол, из которых восстановлением получаются анилин , нитроанилин и фенилендиамин - важные продукты технологии органических веществ, служащие гл. образом исходным материалом при изготовлении целого ряда разнообразных анилиновых красителей. Сульфированием из бензола приготовляют моно- и дисульфокислоты, перерабатываемые далее на фенол и резорцин.

В довоенное время производство бензола в России было развито чрезвычайно слабо. С началом войны и, следовательно, с возрастанием потребности в бензоле, который шел на приготовление различных взрывчатых веществ, спешно пришлось организовать коксобензольные установки. Планомерное и успешное развитие бензольной промышленности началось с момента организации в СССР Акционерного общества «Коксобензол», и в настоящее время количество вырабатываемого ежегодно бензола значительно превышает наиболее производительные годы довоенного времени.

Профессиональные отравления бензолом . Бензол является одним из наиболее сильных профессиональных ядов. Отравление бензолом рабочих возможно: в коксобензольном производстве, при перегонке каменноугольной смолы; на химических и фармацевтических заводах при производстве различных веществ ароматического ряда; в процессах производства различных органических красок; в производстве взрывчатых веществ; при извлечении жиров из костей и кокосовых орехов; на клееваренных заводах, где бензол применяется в качестве растворителя смол, лаков, жиров, йода, фосфора и серы; в резиновом производстве; при изготовлении непромокаемых тканей, линолеума, целлулоида; при окраске различных предметов быстро высыхающими красками и лаками (в частности, аэропланных крыльев); при карбюрации светильного и водяного газа; в химических красильнях и при очистке от жиров тканей, одежды и т. п.; при обслуживании двигателей внутреннего сгорания, и т. д. В последнее время на Западе выпускается множество патентованных фабрикатов, содержащих бензол (лаки, краски, составы для очистки разных предметов) под самыми различными названиями и вызывающих серьезные отравления рабочих.

Бензол проникает в организм гл. образом через дыхательные пути и через легкие проникает в кровь. Вместе с тем бензолом может всасываться также и через неповрежденную кожу. Бензол значительно ядовитее бензина (по Леману и Кравкову, - в 4 раза, по Кону-Абресту, - в 10 раз). Содержание в воздухе 10 мг паров бензола на 1л (по объему 3-4 ч. на 1000 ч.) уже вызывает неприятные ощущения; присутствие в 1 л воздуха 20-30 мг бензола обычно вызывает потерю сознания на несколько часов. Иногда, однако, даже содержание в воздухе 0,001 бензола по объему вызывало смерть. Чтобы предупреждать и медленное действие на рабочих длительного вдыхания паров бензола, не следует допускать их содержания в рабочей атмосфере выше 1:10000, или, примерно, 0,25 мг/л (хотя, по данным специальной американской комиссии, опубликовавшей свой отчет в 1927 г., даже при этих условиях нельзя вовсе избежать воздействия бензола на организм).

Отравление бензолом может иметь острый и хронический характер. В последние годы в медицинской литературе был опубликован ряд смертельных случаев либо немедленно после однократного вдыхания значительного количества паров бензола, либо в результате остро протекающего заболевания после короткого периода работы в атмосфере со значительным количеством паров бензола в воздухе. Немедленная смерть наступает обычно при работе в недостаточно проветренных цистернах, баках и т. п. вместилищах, а также при разрывах сосудов или труб и при незамеченных неисправностях в аппаратуре. Серьезные заболевания, нередко кончающиеся смертью, обычно имеют место при недостаточной кубатуре помещения, отсутствии вентиляции и особенно при высокой температуре помещения. Острые отравления, не кончающиеся немедленной смертью, при вдыхании больших доз вызывают тяжелые изменения со стороны центральной нервной системы: дрожание, судороги, сильное побледнение, расстройства чувствительности, обмороки, а также нередко и злокачественное малокровие (поражающее особенно женщин). Более легкие случаи вызывают головокружение, головную боль, шум в ушах, рвоту. Большей частью скоро наступает состояние как бы опьянения и общей эйфории, в результате чего отравленный теряет правильное восприятие происходящего, не замечает опасности, не уходит с места выделения паров и, при отсутствии помощи со стороны, может стать жертвой дальнейшего отравления. При хроническом отравлении, тянущемся месяцами и даже годами, помимо нервной системы, поражаются в первую очередь органы кровообращения и кроветворения, в результате чего, помимо сильного малокровия, появляются многочисленные мелкие кровоизлияния, как в слизистых оболочках различных внутренних органов, так и в коже. В результате - так наз. «пятнистая болезнь» и напоминающие цингу изменения слизистой оболочки во рту. У женщин появляются обычно сильные маточные кровотечения. Выздоровление наступает редко и даже в благоприятных случаях весьма затягивается. Столь тяжелое действие бензола объясняется тем, что он является сильным ядом, действующим на протоплазму всех клеток организма и на основные окислительные процессы. Мероприятия по предупреждению отравления бензолом в основном те же, как и при отравлении бензином . Необходимо добавить, что всюду, где возможно, следует заменять бензол гораздо менее ядовитыми ксилолом, толуолом, тетрахлоруглеродом или бензином и на работы с бензолом не следует допускать женщин.