Ток термической и динамической стойкости. Выбор и проверка измерительных трансформаторов тока. Проверка защитных аппаратов на термическую и динамическую стойкость

Стойкость трансформатора тока к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.

Ток электродинамической стойкости I Д равен наибольшей амплитуде тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без повреждений, препятствующих его дальнейшей исправной работе.

Ток I Д характеризует способность трансформатора тока противостоять механическим (электродинамическим) воздействиям тока короткого замыкания.

Электродинамическая стойкость может характеризоваться также кратностью K Д , представляющей собой отношение тока электродинамической стойкости к амплитуде .

Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока.

Ток термической стойкости

Ток термической стойкости I tт равен наибольшему действующему значению тока короткого замыкания за промежуток t т, которое трансформатор тока выдерживает в течение всего промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания (см. ниже), и без повреждений, препятствующих его дальнейшей работе.

Термическая стойкость характеризует способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания.

Для суждения о термической стойкости трансформатора тока необходимо знать не только значения тока, проходящего через трансформатор, но и его длительность или, иначе говоря, знать общее количество выделенной теплоты, которое пропорционально произведению квадрата тока I tT и длительности его t T . Это время, в свою очередь, зависит от параметров сети, в которой установлен трансформатор тока, и изменяется от одной до нескольких секунд.

Термическая стойкость может характеризоваться кратностью К Т тока термической стойкости, представляющей собой отношение тока термической стойкости к действующему значению номинального первичного тока.

В соответствии с ГОСТ 7746-78 для отечественных трансформаторов тока установлены следующие токи термической стойкости:

  • односекундный I 1Т или двухсекундный I 2Т (или кратность их K 1Т и K 2Т по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения 330 кВ и выше;
  • односекундный I 1Т или трехсекундный I 3Т (или кратность их K 1Т и K 3Т по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения до 220 кВ включительно.

Между токами электродинамической и термической стойкости должны быть следующие соотношения:

для трансформаторов тока на 330 кВ и выше

для трансформаторов тока на номинальные напряжения до 220 кВ

Температурные режимы

Температура токоведущих частей трансформаторов тока при токе термической стойкости не должна превышать:

  • 200 °C для токоведущих частей из алюминия;
  • 250 °C для токоведущих частей из меди и ее сплавов, соприкасающихся с органической изоляцией или маслом;
  • 300 °С для токоведущих частей из меди и ее сплавов, не соприкасающихся с органической изоляцией или маслом.

При определении указанных значений температуры следует исходить из начальных ее значений, соответствующих длительной работе трансформатора тока при номинальном токе.

Значения токов электродинамической и термической стойкости трансформаторов тока государственным стандартом не нормируются. Однако они должны соответствовать электродинамической и термической стойкости других аппаратов высокого напряжения, устанавливаемых в одной цепи с трансформатором тока. В табл. 1-2 приведены данные динамической и термической стойкости отечественных трансформаторов тока.

Таблица 1-2. Данные электродинамической и термической стойкости некоторых типов отечественных трансформаторов тока


Примечание. Электродинамическая и термическая стойкость зависит от механической прочности изоляционных и токоведущих частей, а также от поперечного сечения последних.

Кабели и шины выбирают по номинальным параметрам (току и напряжению) и проверяют на термическую и динамическую стойкость при КЗ. Поскольку процесс КЗ кратковременный, то можно считать, что все тепло, выделяемое в проводнике кабеля, идет на его нагрев. Температура нагрева кабеля определяется его удельным сопротивлением, теплоемкостью, рабочей температурой. Температура нагрева кабеля в нормальном рабочем режиме

где t о.ср - температура окружающей среды (почвы); t доп - допустимая температура при нормальном режиме, принимаемая равной 60 °С;I доп - допустимый ток для выбранного сечения.

Максимально допустимые кратковременные превышения температуры при КЗ для силовых кабелей с бумажной пропитанной изоляцией принимаются: до 10 кВ с медными и алюминиевыми жилами - 200 °С; 20-35 кВ с медными жилами - 175 °С.

Проверка сечения кабеля на термическую стойкость к токам КЗ проводится по выражению

(10.27)

где В к - тепловой импульс; С = А кон А нач - коэффициент, соответствующий разности выделенного тепла в проводнике после короткого замыкания и до него.

Для кабелей напряжением 6-10 кВ с бумажной изоляцией и медными жилами С = 141, с алюминиевыми жилами С = 85; для кабелей с поливинилхлоридной или резиновой изоляцией с медными жиламиС = 123, с алюминиевыми жиламиС = 75.

При КЗ по токоведущим частям проходят токи переходного режима, вызывая сложные динамические усилия в шинных конструкциях и аппаратах электрических установок. Усилия, действующие на жесткие шины и изоляторы, рассчитывают по наибольшему мгновенному значению тока трехфазного КЗ i у. При этом определяют максимальное усилиеF на шинную конструкцию без учета механических колебаний, но с учетом расстоянияl между изоляторами шинной конструкции и расстояния между фазами а (рис. 10.2).

Рис. 10.2. Расстояние между фазами (b ,h - размеры шин)

Допускаемые напряжения, МПа: для меди МТ - 140, для алюминия AT- 70, для алюминия АТТ - 90, для стали - 160.

В многополосных шинах кроме усилия между фазами возникает усилие между полосами, расчет в этом случае усложняется.

Электродинамические усилия в токоведущих частях выключателей, разъединителей и других аппаратов сложны и трудно поддаются расчету, поэтому заводы-изготовители указывают допустимый через аппарат предельный сквозной ток КЗ (амплитудное значение) I ном дин, который не должен быть меньше найденного в расчете ударного токаI у при трехфазном КЗ.

Сроки службы электротехнического оборудования в зависимости от режимов работы и характеристик внешней среды

Лекция №12-13 Показатели качества электроэнергии и способы ее обеспечения Нормы качества электрической энергии и область их применения в системах электроснабжения

Важной составной частью многогранной проблемы электромагнитной совместимости, под которой понимают совокупность электрических, магнитных и электромагнитных полей, которые генерируют электрообъекты, созданные человеком, и воздействуют на мертвую (физическую) и живую (биологическую) природу, на техническую, информационную, социальную реальности, становится подсистема качества электроэнергии ПКЭ, которая в электрической сети характеризуется показателями качества электроэнергии. Перечень и нормативные (допустимые) значения ПКЭ установлены ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения», введенного с 01.01.1999 взамен существующего ГОСТ 13109-87.

Понятие качества электрической энергии отличается от понятия качества других товаров. Качество электроэнергии проявляется через качество работы электроприемников. Поэтому, если он работает неудовлетворительно, а в каждом конкретном случае анализ качества потребляемой электроэнергии дает положительные результаты, то виновато качество изготовления или эксплуатации. Если ПКЭ не соответствуют требованиям ГОСТа, то предъявляются претензии к поставщику – энергетическому предприятию. В целом ПКЭ определяют степень искажения напряжения электрической сети в результате кондуктивных помех (распределяющихся по элементам электрической сети), вносимых как энергоснабжающей организацией, так и потребителями.

Снижение качества электроэнергии обусловливает:

Увеличение потерь во всех элементах электрической сети;

Перегрев вращающихся машин, ускоренное старение изоляции, сокра­щение срока службы (в некоторых случаях выход из строя) электрооборудования;

Рост потребления электроэнергии и требуемой мощности электрообору­дования;

Нарушение работы и ложные срабатывания устройств релейной защиты и автоматики;

Сбои в работе электронных систем управления, вычислительной техники и специфического оборудования;

Вероятность возникновения однофазных коротких замыканий из-за ус­коренного старения изоляции машин и кабелей с последующим переходом однофазных замыканий в многофазные;

Появление опасных уровней наведенных напряжений на проводах и тро­сах отключенных или строящихся высоковольтных линий электропередач, на­ходящихся вблизи действующих;

Помехи в теле- и радиоаппаратуре, ошибочную работу рентгеновского оборудования;

Неправильную работу счетчиков электрической энергии.

Часть ПКЭ характеризует помехи, вносимые установившимся режимом работы электрооборудования энергоснабжающей организации и потребителей, т. е. вызванные особенностями технологического процесса производства, передачи, распределения потребления электроэнергии. К ним относятся отклонения напряжения и частоты, искажения синусоидальности формы кривой напряжения, несимметрия и колебания напряжения. Для их нормирования установлены допустимые значения ПКЭ.

Другая часть характеризует кратковременные помехи, возникающие в электрической сети в результате коммутационных процессов, грозовых и атмосферных явлений, работы средств защиты и автоматики и послеаварийных режимов. К ним относятся провалы и импульсы напряжения, кратковременные перерывы электроснабжения. Для этих ПКЭ допустимые численные значения ГОСТом не установлены. Однако такие параметры, как амплитуда, длительность, частота и другие, должны измеряться и составлять статистические массивы данных, характеризующие конкретную электрическую сеть в отношении вероятности появления кратковременных помех.

ГОСТ 13109-97 устанавливает показатели и нормы в электрических сетях систем электроснабжения общего назначения переменного трехфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети, находящиеся в собственности различных потребителей электрической энергии, или приемники электрической энергии (точки общего присоединения). Нормы применяют при проектировании и эксплуатации электрических сетей, а также при установлении уровней помехоустойчивости электроприемников и уровней кондуктивных электромагнитных помех, вносимых этими приемниками. Установлено два вида норм: нормально допустимые и предельно допустимые. Оценка соответствия нормам проводится в течение расчетного периода, равного 24 часам.

Качество электроэнергии характеризуется параметрами (частоты и напряжения) в узлах присоединений уровней системы электроснабжения.

Частота - общесистемный параметр определяется балансом активной мощности в системе. При возникновении дефицита активной мощности в системе происходит снижение частоты до такого значения, при котором устанавливается новый баланс вырабатываемой и потребляемой электроэнергии. При этом снижение частоты связано с уменьшением скорости вращения электрических машин и уменьшением их кинетической энергии. Освобождающаяся при этом кинетическая энергия используется для поддержания частоты. Поэтому частота в системе меняется сравнительно медленно. Однако при дефиците активной мощности (более 30%) частота меняется быстро и возникает эффект «мгновенного» изменения частоты - «лавина частоты». Изменение частоты со скоростью более 0,2 Гц в секунду принято называть колебаниями частоты.

Напряжение в узле электроэнергетической системы определяется балансом реактивной мощности по системе в целом и балансом реактивной мощности в узле электрической сети. Устанавливается 11 показателей качества электроэнергии:

    установившееся отклонение напряжения δU у;

    размах изменения напряжения δU t ;

    доза фликера Р t ;

    коэффициент искажения синусоидальности кривой междуфазного (фазного) напряжения К U ;

    коэффициент n - й гармонической составляющей напряжения К U ( n ) ;

    коэффициент несимметрии напряжений по обратной последовательности К 2 U ;

    коэффициент несимметрии напряжений по нулевой последовательности К 0 U ;

    отклонения частоты Δf;

    длительность провала напряжения Δt п;

    импульсное напряжение U имп;

    коэффициент временного перенапряжения K пер U .

Не на все ПКЭ стандартом установлены нормы. Так, установившееся отклонение напряжения (под этим термином понимается среднее за 1 мин отклонение, хотя процесс изменения действующего значения напряжения в течение этой минуты может быть совсем неустановившимся) нормируется только в сетях 380/220 В, а в точках сетей более высокого напряжения его следует рассчитывать. Для провалов напряжения установлена лишь предельно допустимая длительность каждого (30 с) в сетях напряжением до 20 кВ и представлены статистические данные об относительной дозе провалов разной глубины в общем числе провалов, но не приводятся статистические данные о их числе за единицу времени (неделю, месяц и т. п.). По импульсным напряжениям и временным перенапряжениям нормы не установлены, но дана справочная информация о возможных их значениях в сетях энергоснабжающих организаций.

При определении значений некоторых показателей КЭ используют следующие вспомогательные параметры электрической энергии:

Частоту повторения изменений напряжения F δUt ;

Интервал между изменениями напряжения Δt i , i +1 ;

Глубину провала напряжения δU п ,

Частость появления провалов напряжения F п ;

Длительность импульса по уровню 0,5 его амплитуды Δt имп 0,5 ;

Длительность временного перенапряжения Δt пер U .

На все ПКЭ, численные значения норм на которые есть в стандарте, договорно запускается механизм штрафных санкций, формируемый на шесть ПКЭ из 11 перечисленных: отклонение частоты; отклонение напряжения; доза фликера; коэффициент искажения синусоидальности кривой напряжения; коэффициент несимметрии напряжений по обратной последовательности; коэффициент несимметрии напряжений по нулевой последовательности.

Ответственность за недопустимые отклонения частоты безусловно лежит на энергоснабжающей организации. За недопустимые отклонения напряжения энергоснабжающая организация несет ответственность в случае, если потребитель не нарушает технических условий потребления и генерации реактивной мощности. Ответственность за нарушение норм по четырем остальным (ПКЭ с определяемой ответственностью) возлагается на виновника, определяемого на основе сопоставления включенного в договор допустимого вклада в значение рассматриваемого ПКЭ в точке учета электроэнергии с фактическим вкладом, вычисляемым на основе измерений. Если допустимые вклады в договоре не указаны, энергоснабжающая организация несет ответственность за низкое качество, независимо от виновника его ухудшения.

Трансформаторы тока предназначены для уменьшения первичного тока до значений, наиболее удобных для измерительных приборов и реле. (5 А, реже 1 или 2,5 А), а также для отделения цепей управления и защиты от первичных цепей высокого напряжения. Трансформаторы тока, применяемые в РУ, выполняют одновременно роль проходного изолятора (ТПЛ, ТПОЛ). В комплектных РУ применяются опорно-проходные (стержневые) трансформаторы тока - ТЛМ. ТПЛК, ТНЛМ, шинные - ТШЛ. в РУ 35 кВ и выше - встроенные, в зависимости от типа РУ и его напряжения.

Расчет трансформаторов тока на подстанции, по существу, сводится к проверке трансформатора тока, поставляемого комплектно с выбранной ячейкой. Итак, марка трансформатора тока зависит от типа выбранной ячейки; кроме того, трансформаторы тока выбирают:

1) по напряжению ;

2) по току (первичному и вторичному)

При этом следует иметь в виду, что номинальный вторичный ток 1А применяется для РУ 500 кВ и мощных РУ 330 кВ, в остальных случаях применяют вторичный ток 5 А. Номинальный первичный ток должен быть как можно ближе к расчетному току установки, так как недогрузка первичной обмотки трансформатора приводит к увеличению погрешностей.

Выбранный трансформатор тока проверяют на динамическую и термическую стойкость к токам короткого замыкания. Кроме этого трансформаторы тока подбирают по классу точности, который должен соответствовать классу точности приборов, подключаемых ко вторичной цепи измерительного трансформатора тока (ИТТ) - Чтобы трансформатор тока обеспечил заданную точность измерений, мощность подключенных к нему приборов не должна быть выше номинальной вторичной нагрузки, указанной в паспорте трансформатора тока.



Термическую стойкость трансформатора тока сравнивают с тепловым импульсом B k :

где - коэффициент динамической устойчивости.

Нагрузка вторичной цепи трансформатора тока может быть подсчитана по выражению:

где - сумма сопротивлений всех последовательно включенных обмоток приборов или реле;

Сопротивление соединительных проводов;

Сопротивление контактных соединений ( = 0.05 Ом, при 2 – 3-х приборах: при числе приборов большем 3 = 0,1 Ом).

Сопротивление приборов определяется по формуле:

где - удельное сопротивление провода;

l расч - расчетная длина проводов;

q - сечение проводов.

Длина соединительных проводов зависит от схемы соединения трансформатора тока:

, (6.37)

где m - коэффициент, зависящий от схемы включения;

l - длина проводов (для подстанций принимают l = 5 м).

При включении трансформатора тока в одну фазу m = 2, при включении трансформатора тока в неполную звезду, , при включении в звезду, m =1.

Минимальное сечение проводов вторичных цепей трансформатора тока не должно быть меньше 2,5 мм 2 (для алюминия) и 1,5 мм 2 (для меди) по условию механической прочности. Если к трансформатору тока присоединены счетчики, эти сечения должны быть увеличены на одну ступень.

В РУ НН подстанции следует выбирать (проверять) трансформаторы тока в ячейках следующих типов: ввода, секционных, отходящих линий, а также в ячейках трансформатора собственных нужд. Расчетные токи этих ячеек определяются по выражениям (6.21-6.23), а в ячейках ТСН:

, (6.38)

где S нтсн - номинальная мощность ТСН.

Результаты расчета сводятся в таблицу 6.8:

Таблица 6.8 - Сводная таблица по выбору трансформаторов тока РУ НН подстанци:

Параметр трансформатора Условие выбора (проверки) Типы ячеек
ввода секционирования отходящих линий ТСН
Тип трансформатора определяется серией ячейки (по справочнику)
Номинальное напряжение
Номинальный ток
первичный
вторичный А
Класс точности В соответствии с классом точности, присоединенных приборов
или
Динамическая устойчивость
Термическая устойчивость

Пример 1

Выбрать трансформатор тока в ячейке ввода силового трансформатора на подстанции. Номинальная мощность трансформатора 6,3 МВА, коэффициент трансформации 110/10,5 кВ. На подстанции установлено два трансформатора. Расчетная нагрузка подстанции составляет S max 10,75 МВА. Сеть 10 кВ не заземлена. Ударный ток на стороне низкого напряжения составляет 27,5 кА. К трансформаторам тока должны быть присоединены амперметры и счетчики активной и реактивной мощности. Тип ячеек в РУ-10 кВ - КРУ-2-10П.

Максимальный расчетный ток ячейки ввода (для наиболее неблагоприятного эксплуатационного режима):

А.

Выбирается ближайший стандартный трансформатор тока, встроенный в ячейку ввода (КРУ-2-10П) - ТПОЛ-600/5-0,5/Р с двумя вторичными обмотками: для измерительных приборов и релейной защиты. Номинальная нагрузка такого трансформатора тока класса точности 0,5 - S 2 = 10 ВА (r 2 = 0,4 Ом), кратность электродинамической устойчивости, k дин = 81, кратность термической устойчивости, k Т = 3 с. Эти данные указаны в /3, 10/.

Выбранный трансформатор тока проверяется на электродинамическую устойчивость:

,

а также на термическую устойчивость:

,

C из расчета (таблица 4.4); T a =0,025 с по таблице 4.3;

1105,92 > 121,78.

В незаземленных цепях достаточно иметь трансформаторы тока в двух фазах, например, в A и C. Определяются нагрузки на трансформатор тока от измерительных приборов, данные сводятся в таблицу 6.9:

Таблица 6.9 – Нагрузка измерительных приборов по фазам

Наименование прибора
А В С
Амперметр Н-377 0,1
Счетчик активной энергии САЗ-И673 2,5 2,5
Счетчик реактивной энергии СРЧ-И676 2,5 2,5
Итого 5,1

Из таблицы видно, что наиболее нагруженной является фаза А, ее нагрузка составляет ВА или r приб = 0,204 Ом. Определяется сопротивление соединительных проводов из алюминия сечением q = 4 мм 2 , длиной l = 5 м.

Ом,

где = 0,0283 Ом/м·мм 2 для алюминия;

Полное сопротивление вторичной цепи:

где r конт = 0,05 Ом.

Сравнивая паспортные и расчетные данные по вторичной нагрузке трансформаторов тока получаем:

Следовательно, выбранный трансформатор тока проходит по всем параметрам.

6 Проверка кабелей на термическую стойкость

На термическую стойкость кабели проверяются по условию

где q - выборное сечение проводника.

qmin - кvВк (для принятых в проекте марок КНР согласно приложению 21.ОСТ5.6181-81 принимаем к=7,3).

Для генераторного фидера уставка срабатывания автоматического выключателя 0,18с и тепловой импульс для этого момента времени Вк=10,944кА2с.

Отсюда минимальное сечение qmin=7,3v10,944=24,205мм2.

Таким образом, для генераторного фидера годятся все сечения, начиная с 25мм2 и более, т.е. сечение 370мм2 (2?185), выбранное из условий нагрева, удовлетворяет заданному условию.

Срабатывание защиты на фидерах потребителей происходит в течение 0,04с. Для этого момента времени Вк=Вк0,04=2,566кА2с и минимальное сечение qmin=7,3v2,566=11,694мм2.

Таким образом на фидерах, подключаемых к ГРЩ потребителей можно применять кабели сечением 16кв.мм и более.

Высоковольтный колонковый элегазовый выключатель

Температуру нагрева контактной площадки можно определить по обращенной формуле Кукекова: , (5.9) где Tк - максимально допустимая температура нагрева контакта при протекании по нему тока короткого замыкания...

Динамические процессы и устойчивость судовых электроэнергетических систем

На термическую стойкость кабели проверяются по условию q?qmin, где q - выборное сечение проводника. qmin - кvВк (для принятых в проекте марок КНР согласно приложению 21.ОСТ5.6181-81 принимаем к=7,3)...

Оценка правильности выбора числа и мощности генераторных агрегатов в судовой электрической сети

Проектирование городских электрических сетей

Степень термического воздействия тока КЗ на проводники и электрические аппараты определяется по значению интеграла Джоуля. Если выполняется условие для расчёта интеграла Джоуля можно воспользоваться выражением:...

Разработка внешнего электроснабжения

Составим схему замещения для расчета к.з. Sc=1000 МВА хс=0,9 Uср=115 кВ L=68км R0=0,43 Ом/км Х0=0...

Стандартное сечение 150 мм2, выбранное для кабелей а и в по нагреву и по экономической плотности тока, следует проверить на термическую стойкость в режиме КЗ на сборных шинах источника питания 8 кА. где - импульс квадратичного тока КЗ...

Расчет трехагрегатной тяговой подстанции на 10кВ

Для обеспечения термической стойкости шин при КЗ необходимо, чтобы протекающий по ним ток не вызывал повышения температуры сверх максимально допустимой при кратковременном нагреве, которая составляет для медных шин 300єС....

Реконструкция системы электроснабжения жилого микрорайона города

Выбранные в нормальном режиме и проверенные по допустимой перегрузке в послеаварийном режиме кабели проверяются по условию (6.10) где SМИН - минимальное сечение по термической стойкости, мм2; SЭ - экономическое сечение...

Система электроснабжения авиазавода

Выключатель АЕ 2066МП-100 Предельная отключающая способность Iав. пр=9 кА. Iав. пр=9кА>Iуд=3,52кА Динамическая стойкость для данного выключателя выполняется. Проверка расцепителя по условию: где Iр. max - максимальный рабочий ток двигателя пресса...

Система электроснабжения сельскохозяйственного района

Расчет производиться по формуле: , мм2, (6.13) где С - постоянная, принимающая значение для СИП - 3 С=; Та.ср - усредненное значение времени затухания свободных токов КЗ, Та.ср = 0,02 с; - время срабатывания выключателя, с, для ВВ/ТЕL - 10 с...

Электроснабжение агломерационной фабрики металлургического комбината

Определим минимальное сечение кабеля, по условиям термической стойкости, для точки К-2 мм2 где С - тепловая функция, для кабелей 6 кВ с алюминиевыми жилами и бумажной изоляцией С=85 А. с2/мм2. Определим минимальное сечение кабеля...

Электроснабжение жилого дома

Проверка термической стойкости кабеля основана на расчете теплового импульса - количества тепла...

Для проверки проводников на термическую стойкость при коротком замыкании пользуются понятием теплового импульса Bk, характеризующего количество теплоты...

Электроснабжение завода по производству полиолефинов

Пункт Sрасч, кВА n Марка Fприн, ммІ Bk, кА·ммІ qmin, ммІ Fкон, ммІ 1 2 3 4 5 6 7 8 ГПП-ТП 1 2157,48 2 N2XSEY 3Ч50 8,74 21,117 3Ч50 ГПП-ТП 6 1028,92 2 N2XSEY 3Ч25 8,64 21,001 3Ч25 ГПП-ТП 7 448,98 2 N2XSEY 3Ч25 8,83 21,230 3Ч25 ГПП-АД1 1485,00 2 N2XSEY 3Ч25 8,80 21...

Электроснабжение механосборочного цеха

При прохождении тока к.з. по кабелю, в кабеле выделяется тепловой импульс. Количество теплоты зависит от времени действия защиты, времени действия тока к.з и величина тока короткого замыкания...

4.4 Проверка защитных аппаратов на термическую и динамическую стойкость

Выключатель АЕ 2066МП-100

Предельная отключающая способность Iав. пр=9 кА.

Iав. пр=9кА>Iуд=3,52кА

Выключатель АЕ 2066-100

Предельная отключающая способность Iав. пр=12 кА.

Iав. пр=12 кА>Iуд=11,5 кА

Динамическая стойкость для данного выключателя выполняется.

Проверка расцепителя по условию:

где I р. max - максимальный рабочий ток двигателя пресса.

Предохранитель ПН-2-100-10

U ном = 380В

I откл ном > i уд 100кА > 1,94кА

I ном > I раб 100А > 10А

I ном вст > I раб 31,5А > 10А

Высоковольтный колонковый элегазовый выключатель

Температуру нагрева контактной площадки можно определить по обращенной формуле Кукекова: , (5.9) где Tк - максимально допустимая температура нагрева контакта при протекании по нему тока короткого замыкания...

Динамические процессы и устойчивость судовых электроэнергетических систем

На термическую стойкость кабели проверяются по условию q?qmin, где q - выборное сечение проводника. qmin - кvВк (для принятых в проекте марок КНР согласно приложению 21.ОСТ5.6181-81 принимаем к=7,3)...

Оценка правильности выбора числа и мощности генераторных агрегатов в судовой электрической сети

На термическую стойкость кабели проверяются по условию q?qmin, где q - выборное сечение проводника. qmin - кvВк (для принятых в проекте марок КНР согласно приложению 21. ОСТ5.6181-81 принимаем к=7,3)...

Стандартное сечение 150 мм2, выбранное для кабелей а и в по нагреву и по экономической плотности тока, следует проверить на термическую стойкость в режиме КЗ на сборных шинах источника питания 8 кА. где - импульс квадратичного тока КЗ...

Расчет трехагрегатной тяговой подстанции на 10кВ

Сводится к определению в материалах шин механического напряжения от действия электродинамических сил. Наибольшее механическое напряжение в материале жестких шин не должно превосходить 0,7 от временного сопротивления разрыву по Госстандарту...

Расчет трехагрегатной тяговой подстанции на 10кВ

Для обеспечения термической стойкости шин при КЗ необходимо, чтобы протекающий по ним ток не вызывал повышения температуры сверх максимально допустимой при кратковременном нагреве, которая составляет для медных шин 300єС....

Реконструкция системы электроснабжения жилого микрорайона города

Выбранные в нормальном режиме и проверенные по допустимой перегрузке в послеаварийном режиме кабели проверяются по условию (6.10) где SМИН - минимальное сечение по термической стойкости, мм2; SЭ - экономическое сечение...

Релейная защита и автоматизация управления системами электроснабжения

Условие электродинамической устойчивости ТТ ТЛК-35-50: , Подставляя численные значения, получим: Таким образом, трансформатор тока ТЛК-35-50 подходит по условию электродинамической устойчивости...

Система электроснабжения сельскохозяйственного района

Расчет производиться по формуле: , мм2, (6.13) где С - постоянная, принимающая значение для СИП - 3 С=; Та.ср - усредненное значение времени затухания свободных токов КЗ, Та.ср = 0,02 с; - время срабатывания выключателя, с, для ВВ/ТЕL - 10 с...

Электроснабжение агломерационной фабрики металлургического комбината

Определим минимальное сечение кабеля, по условиям термической стойкости, для точки К-2 мм2 где С - тепловая функция, для кабелей 6 кВ с алюминиевыми жилами и бумажной изоляцией С=85 А. с2/мм2. Определим минимальное сечение кабеля...

Электроснабжение жилого дома

Проверка термической стойкости кабеля основана на расчете теплового импульса - количества тепла...

Для проверки проводников на термическую стойкость при коротком замыкании пользуются понятием теплового импульса Bk, характеризующего количество теплоты...

Электроснабжение завода по производству полиолефинов

Пункт Sрасч, кВА n Марка Fприн, ммІ Bk, кА·ммІ qmin, ммІ Fкон, ммІ 1 2 3 4 5 6 7 8 ГПП-ТП 1 2157,48 2 N2XSEY 3Ч50 8,74 21,117 3Ч50 ГПП-ТП 6 1028,92 2 N2XSEY 3Ч25 8,64 21,001 3Ч25 ГПП-ТП 7 448,98 2 N2XSEY 3Ч25 8,83 21,230 3Ч25 ГПП-АД1 1485,00 2 N2XSEY 3Ч25 8,80 21...

Электроснабжение механосборочного цеха

При прохождении тока к.з. по кабелю, в кабеле выделяется тепловой импульс. Количество теплоты зависит от времени действия защиты, времени действия тока к.з и величина тока короткого замыкания...