Углеводный обмен регулируется гормоном. Гормональная регуляция и патологии углеводного обмена. Гормоны поджелудочной железы

Поджелудочная железа является одним из основных органов пищеварительной системы организма. Состоит она из эндокринной и экзокринной частей, которые образуются из энтодермы первичной кишки, участвуя как во внешней, так и во внутренней секреции.

Сбой в работе поджелудочной железы приводит к таким заболеваниям, как острый или хронический панкреатит, жировой некроз, атрофия, опухоли различной этиологии, склероз.

Основные функции экзокринной и эндокринной части поджелудочной железы

Любая железа, в том числе и поджелудочная, производит гормоны, которые представляют собой биологически активные соединения, имеющие строго избирательное и специфическое направление, воздействующее на повышение, либо понижение уровня функционирования организма.

Регулирование ведения гормона в кровь происходит по принципу отрицательной обратной реакции, т.е. увеличенный уровень гормонов в крови приводит к приостановке их воспроизводства.

Почти 98% всего тела железы приходится на экзокринную часть, в которой выделяется панкреатический сок, содержащий ферменты, участвующие в растворении жиров, углеводов и белков. Попадая в двенадцатиперстную кишку, такой пищеварительный сок, помогает полноценной работе пищеварения.

В эндокринной части железы образуются гормоны, которые, помимо регулирования метаболического процесса, активно участвуют в обмене углеводов.

Эти гормоны обладают многими общими характеристиками, так как, по своей природе они оба белки, оба развиваются в поджелудочной железе, оба воздействуют на обменный процесс глюкозы, белков и жиров.

Гормоны поджелудочной железы

Исполняя разнородные задачи, поджелудочная железа производит два гормона – гормон инсулин и гормон глюкагон, которые, обладая общими признаками, противоположны по своей направленности на обмен углеводов.

Инсулин, синтезирующийся бета — клетками, уменьшает насыщенность уровня глюкозы в крови, чем содействует преобразованию глюкозы в гликоген для тканей печени и мышц. Замедляя разложение белков, преобразовывая их в глюкозу, инсулин. Таким образом, контролирует жировой обмен методом преобразования жирных кислот из продуктов обмена углеводов.

Глюкагон, синтезирующийся альфа — клетками, будучи антагонистом инсулина по регулированию обмена углеводов, наоборот обладает эффектом повышения количества глюкозы в крови, чем усиливает продукцию инсулина.

Процесс распада жировых и белковых соединений, при котором происходит образование глюкозы в клетках крови, называется гликонеогенезом.

Деятельность инсулина направлена на торможение гликонеогенеза, способствуя при этом повышению количества жиров и белков в организме.

Для чего важен обмен углеводов

В организм углеводы попадают, как правило, с растительной пищей, в значительно меньшем количестве с пищей животного происхождения.

Помимо этого, углеводы образуются в организме в результате распада жиров и аминокислот. Несмотря на их важность для организма, их количество составляет около 2 %, что намного меньше, чем количество белков, жиров.

В случае, если поступающей с пищей энергии больше, чем требуется для энергетического расхода организму, частично эта энергия откладывается в жировой запас ткани, из-за чего человек и толстеет. И наоборот, если энергии поступает меньше, чем необходимо, организм берет недополученную энергию из запасов, затрачивая на это углеводы, а когда их объем достигает возможного минимума, начинается внеплановое расщепление жиров, т.е. чем меньше человек принимает пищи, тем меньше он затрачивает энергии, и худеет.

Обмен углеводов – это процесс, при котором различные виды сахаридов и производные от них образуются в энергию, обеспечивая организм человека, и регулируют его жизнедеятельность.

Основная часть такой энергии, требуемая для интеллектуальной и физической деятельности, образуется именно из поступающих сахаров. Кроме того, без углеводов невозможно и построение клеточных структур, питания клеток и поддержания их тонуса.

Нарушения в работе обмена углеводов, из-за избытка или недостатка сахара в крови, приводят к проблемам со здоровьем.

При нарушении обмена углеводов возникают такие заболевания, как:

  1. сахарный диабет, т.е. недостаток инсулина. При этом органы и системы организма недополучают для своей деятельности необходимую энергию, и, следовательно, не могут полноценно выполнять свои функции. Для данного заболевания характерно резкое похудение, постоянная усталость, голод, постоянное чувство жажды, частые походы в туалет. Кроме того, у человека резко ухудшается зрение, происходит медленное заживление ран, постоянно чувствуется онемение конечностей.
  2. гипогликемия, т.е. резкое понижение уровня глюкозы в крови. Для данного случая характерно наличие постоянного головокружения, ухудшение зрения, возникает повышенное чувство голода, повышается потливость, появляется бледность кожных покровов, происходит нарушение нервной системы, что в свою очередь проявляется спутанностью сознания, повышенной нервозностью, частой мигренью и ознобом, рассеянными вниманием, нарушением концентрации. При значительном понижении уровня глюкозы в крови возможно даже наступление комы.
  3. гипергликемия, т.е. резкое повышение уровня глюкозы в крови.

Инсулин, как гормон, регулирующий углеводный обмен

Гормон поджелудочной железы инсулин, вырабатывается в организме человека, максимально до 25 лет, и после его поступления в организм возникает гипергликемия.

Более всего от инсулина зависит обеспечение глюкозой мышечной и жировой тканей, поэтому они считаются инсулинозависимыми. На эти ткани возложены важнейшие функции в организме, как обеспечение кровообращения двигательной системы, органов дыхания и ряд других, а достигается это, благодаря запасу энергии, полученной из пищи. Именно по этой причине важно полноценное и правильное регулирование углеводного обмена.

Сложно недооценить значение инсулина для углеводного обмена. Этот гормон играет одну из главных ролей и участвует более чем двадцати реакциях организма, поскольку без углеводного обмена глюкоза, являясь главным источником энергии организма, не сможет проникнуть в клетку, в результате чего, у клетки возникает энергетический голод. При этом излишек глюкозы, скапливаясь в крови, отрицательно воздействует на все органы и ткани организма.

Отсутствие достаточного поступления инсулина, приводит к понижению возможности клеток усваивать углеводы, из-за чего возникает сахарный диабет.

У страдающих сахарным диабетом, из-за сбоя в организме, нарушаются уже все виды обмена. Поэтому их основной задачей является поддержание необходимого уровня сахара крови.

Естественным осложнением диабета, является поражение как мелких, так и крупных сосудов, что в свою очередь служит предпосылкой развития атеросклероза и других сосудистых заболеваний, тем самым диабет увеличивает больных с сердечно-сосудистыми болезнями.

На сегодняшний день учеными полностью изучена структура гормона инсулина, что помогло синтезировать его искусственным способом, благодаря чему он стал эффективным средством для лечения диабета, и позволяет больным вести относительно комфортный образ жизни.

Гормон инсулин стал первым белковым гормоном, который был синтезирован искусственным способом.

Регуляция углеводного обмена осуществляется на всех его этапах нервной системой и гормонами. Помимо этого, активность ферментов отдельный путей метаболизма углеводов регулируется по принципу «обратной связи», в основе которого лежит аллостерический механизм взаимодействия фермента с эффектором. Регуляция углеводного обмена осуществляется на всех его этапах нервной системой и гормонами. Помимо этого, активность ферментов отдельный путей метаболизма углеводов регулируется по принципу «обратной связи», в основе которого лежит аллостерический механизм взаимодействия фермента с эффектором. К аллостерическим эффекторам можно отнести конечные продукты реакции, субстраты, некоторые метаболиты, адениловые мононуклеотиды. Важнейшую роль в направленности углеводного обмена (синтез или распад углеводов) играет соотношение коферментов НАД + / НАДН∙Н + и энергетический потенциал клетки.

Постоянство уровня глюкозы в крови – важнейшее условие поддержания нормальной жизнедеятельности организма. Нормогликемия является результатом слаженной работы нервной системы, гормонов и печени.

Печень – единственный орган, депонирующий глюкозу (в виде гликогена) для нужд всего организма. Благодаря активной фосфатазе глюкозо-6-фосфата гепатоциты способны образовывать свободную глюкозу, которая, в отличие от её фосфорилированных форм, может проникать через мембрану клеток в общий круг кровообращения.

Из гормонов выдающуюся роль играет инсулин . Инсулин оказывает свое действие только на инсулинзависимые ткани, прежде всего, на мышечную и жировую. Мозг, лимфатическая ткань, эритроциты относятся к инсулиннезависимым. В отличие от других органов, действие инсулина не связано с рецепторными механизмами его влияния на метаболизм гепатоцитов. Хотя глюкоза свободно проникает в печёночные клетки, но это возможно только при условии повышенной её концентрации в крови. При гипогликемии, напротив, печень отдаёт глюкозу в кровь (даже несмотря на высокий уровень инсулина в сыворотке).

Наиболее существенным действием инсулина на организм является снижение нормального или повышенного уровня глюкозы в крови – вплоть до развития гипогликемического шока при введении высоких доз инсулина. Уровень глюкозы в крови снижается в результате: 1. Ускорения поступления глюкозы в клетки. 2. Повышения использования глюкозы клетками.

    Инсулин ускоряет поступление моносахаридов в инсулинзависимые ткани, особенно глюкозы (а также сахаров схожей конфигурации в положении С 1 -С 3), но не фруктозы. Связывание инсулина со своим рецептором на плазматической мембране приводит к перемещению запасных белков-переносчиков глюкозы (глют 4 ) из внутриклеточных депо и включению их в мембрану.

    Инсулин активирует использование клетками глюкозы путём:

    активирования и индукции синтеза ключевых ферментов гликолиза (глюкокиназы, фосфофруктокиназы, пируваткиназы).

    Увеличения включения глюкозы в пентозофосфатный путь (активирование дегидрогеназ глюкозо-6-фосфата и 6-фосфоглюконата).

    Повышения синтеза гликогена за счёт стимуляции образования глюкозо-6-фосфата и активирования гликогенсинтазы (одновременно инсулин ингибирует гликогенфосфорилазу).

    Торможения активности ключевых ферментов глюконеогенеза (пируваткарбоксилазы, фосфоенол-ПВК-карбоксикиназы, бифосфатазы, глюкозо-6-фосфатазы) и реп-рессии их синтеза (уставлен факт репрессии гена фосфоенолПВКкарбоксикиназы).

Другие гормоны, как правило, способствуют увеличению содержания глюкозы в крови.

Глюкагон и адреналин приводят к росту гликемии путём активации гликогенолиза в печени (активирование гликогенфосфорилазы), однако в отличие от адреналина глюкагон не влияет на гликогенфосфорилазу мышц . Кроме того, глюкагон активирует глюконеогенез в печени, следствием чего также является увеличение концентрации глюкозы в крови.

Глюкокортикоиды способствуют повышению уровня глюкозы в крови за счёт стимуляции глюконеогенеза (ускоряя катаболизм белков в мышечной и лимфоидной тканях, эти гормоны увеличивают содержание в крови аминокислот, которые, поступая в печень, становятся субстратами глюконеогенеза). Кроме того, глюкокортикоиды препятствуют утилизации глюкозы клетками организма.

Гормон роста вызывает увеличение гликемии опосредованно: стимулируя распад липидов, он приводит увеличению уровня жирных кислот в крови и клетках, снижая тем самым потребность последних в глюкозе (жирные кислоты – ингибиторы использования глюкозы клетками).

Тироксин, особенно вырабатываемый в избыточных количествах при гиперфункции щитовидной железы, также способствует повышению уровня глюкозы в крови (за счёт увеличения гликогенолиза).

При нормальном уровне глюкозы в крови почки полностью её реабсорбируют и сахар в моче не определяется. Однако если гликемия превышает 9-10 ммоль/л (почечный порог ), то появляется глюкозурия . При некоторых поражениях почек глюкоза может обнаруживаться в моче и при нормогликемии.

Проверка способности организма регулировать содержание глюкозы в крови (толерантность к глюкозе ) используется для диагностики сахарного диабета при постановке перорального глюкозо-толерантного теста:

Первая проба крови берётся натощак после ночного голодания. Затём больному в течение 5 мин. дают выпить раствор глюкозы (75г глюкозы, растворённой в 300 мл воды). После этого каждые 30 мин. на протяжении 2-х часов определяют содержание глюкозы в крови

Рис. 10 “ Сахарная кривая “ в норме и при патологии

Министерство здравоохранения Республики Беларусь

Учреждение образования

«Гомельский государственный медицинский университет»

Кафедра биологической химии

Обсуждено на заседании кафедры (МК или ЦУНМС)____________________

Протокол № _______

По биологической химии

для студентов 2-го курса лечебного факультета

Тема: Углеводы 4. Патология углеводного обмена

Время__90 мин___________________

Учебная цель:

1.Сформировать представления о молекулярных механизмах основных нарушений углеводного обмена.

ЛИТЕРАТУРА

1.Биохимия человека:, Р.Марри, Д.Греннер, П.Мейес, В.Родуэлл.- М.книга,2004.- т.1.с. 205-211., 212-224.

2.Основы биохимии:А.Уайт, Ф.Хендлер,Э.Смит, Р.Хилл, И.Леман.-М. книга,

1981,т. -.2,.с. 639- 641,

3.Наглядная биохимия: Кольман., Рем К.-Г-М.книга 2004г.

4.Биохимические основы...под. ред. член- корр. РАН Е.С. Северина. М.Медицина,2000.-с.179-205.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1.Мультимедийная презентация

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

Всего: 90 мин

Введение. Задача регулирования и ограничения потребления углеводов с особой остротой возникает в связи с профилактикой и лечением диабета, а также выявлением корреляции между чрезмерным потреблением углеводов с частотой развития некоторых болезней - «спутников тучности», а также с развитием атеросклероза.

    Дайте определение понятию стресс, перечислите фазы стресса.

    Объясните, почему стресс называется «общим адаптационным синдромом»

    Назовите стресс-реализующие гормональные системы.

    Перечислите важнейшие гормоны, участвующие в развитии общего адаптационного синдрома.

    Перечислите основные эффекты гормонов, обеспечивающие кратковременную адаптацию, объясните механизм.

    Объясните понятие «системный структурный след адаптации», какова его физиологическая роль?.

    Эффекты какого гормона обеспечивают долговременную адаптацию, каковы механизмы действия этого гормона?

    Перечислите гормоны коры надпочечников.

    Укажите, в чем заключается влияние глюкокортикоидов

на белковый обмен

на жировой обмен

на углеводный обмен

Гормоны в регуляции основных параметров гомеостаза Гормональная регуляция обмена веществ

Когда мы говорим о регуляции всех видов обмена, мы немного лукавим. Дело в том, что избыток жиров приведет к нарушению их обмена и образованию, например, атеросклеротических бляшек, а недостаток к нарушению синтеза гормонов лишь через длительное время. Это же касается и нарушений белкового обмена. Лишь уровень глюкозы в крови является тем гомеостатическим параметром, снижение уровня которого приведет к гипогликемической коме через несколько минут. Это произойдет в первую очередь потому, что нейроны не получат глюкозы. Поэтому, говоря об обмене веществ, в первую очередь обратим внимание на гормональную регуляцию уровня глюкозы в крови, а параллельно остановимся на роли этих же гормонов в регуляции жирового и белкового обмена.

Регуляция углеводного обмена

Глюкоза наряду с жирами и белками является источником энергии в организме. Запасы энергии в организме в виде гликогена (углеводы) невелики по сравнению с запасом энергии, представленной в виде жиров. Так, количество гликогена в организме человека весом 70 кг составляет 480 г (400 г – гликоген мышц и 80 г – гликоген печени), что эквивалентно 1920 ккал (320 ккал-гликоген печени и 1600 – гликоген мышц). Количество циркулирующей глюкозы в крови составляет всего 20 г (80 ккал). Содержащаяся в этих двух депо глюкоза является основным и почти единственным источником питания инсулиннезависимых тканей. Так, головной мозг массой 1400 г при интенсивности кровоснабжения 60 мл/100 г в минуту потребляет 80 мг/мин глюкозы, т.е. около 115 г за 24 часа. Печень способна генерировать глюкозу со скоростью 130 мг/мин. Таким образом, более 60% глюкозы, образующейся в печени, идет на обеспечение нормальной активности центральной нервной системы, причем это количество остается неизменным не только при гипергликемии, но даже при диабетической коме. Потребление глюкозы ЦНС уменьшается лишь после того, как ее уровень в крови становится ниже 1,65 ммоль/л (30 мг%). В синтезе одной молекулы гликогена участвуют от 2000 до 20 000 молекул глюкозы. Образование гликогена из глюкозы начинается с процесса фосфорилирования ее с помощью ферментов глюкокиназы (в печени) и гексокиназы (в других тканях) с образованием глюкозо-6-фосфата (Г-6-Ф). Количество глюкозы в крови, оттекающей от печени, зависит в основном от двух взаимосвязанных процессов: гликолиза и глюконеогенеза, которые в свою очередь регулируются ключевыми ферментами фосфофруктокиназой и фруктозо-1, 6-бисфосфатазой соответственно. Активность этих ферментов регулируется гормонами.

Регуляция концентрации глюкозы в крови происходит двумя путями: 1) регуляция по принципу отклонения параметра от нормальных значений. Нормальная концентрация глюкозы в крови составляет 3.6 – 6.9 ммоль/л. Регуляция концентрации глюкозы в крови в зависимости от ее концентрации осуществляется двумя гормонами с противоположными эффектами – инсулином и глюкагоном; 2) регуляция по принципу возмущения – эта регуляция не зависит от концентрации глюкозы в крови, а осуществляется в соответствии с необходимостью увеличения уровня глюкозы в крови в различных, как правило, стрессирующих ситуациях. Гормоны, увеличивающие уровень глюкозы в крови, поэтому называются контринсулярными. К ним относятся: глюкагон, адреналин, норадреналин, кортизол, тиреоидные гормоны, соматотропин, потому, что единственный гормон, снижающий уровень глюкозы в крови – инсулин (рисунок 18).

Основное место в гормональной регуляции гомеостаза глюкозы в организме отводится инсулину. Под влиянием инсулина активируются ферменты фосфорилирования глюкозы, катализирующие образование Г-6-Ф. Инсулин также повышает проницаемость клеточной мембраны для глюкозы, что усиливает ее утилизацию. При увеличении концентрации Г-6-Ф в клетках повышается активность процессов, для которых он является исходным продуктом (гексозомонофосфатный цикл и анаэробный гликолиз). Инсулин увеличивает долю участия глюкозы в процессах образования энергии при неизменном общем уровне энергопродукции. Активация инсулином гликогенсинтетазы и гликогенветвящего фермента способствует увеличению синтеза гликогена. Наряду с этим инсулин оказывает ингибирующее влияние на глюкозо-6-фосфатазу печени и тормозит, таким образом, выход свободной глюкозы в кровь. Кроме того, инсулин угнетает активность ферментов, обеспечивающих глюконеогенез, за счет чего тормозится образование глюкозы из аминокислот Конечным результатом действия инсулина (при его избытке) является гипогликемия, стимулирующая секрецию контринсулярных гормонов-антагонистов инсулина.

ИНСУЛИН - гормон синтезируется  клетками островков Лангерганса поджелудочной железы. Основной стимул для секреции - повышение уровня глюкозы в крови. Гипергликемия способствует увеличению выработки инсулина, гипогликемия уменьшает образование и поступление гормона в кровь Кроме того, секреция инсулина усиливается под влиянием. ацетилхолина (парасимпатическая стимуляция), норадреналина через -адренорецепторы, а через -адренорецепторы норадреналин тормозит секрецию инсулина. Некоторые гормоны желудочно-кишечного тракта, такие как желудочный ингибирующий пептид, холецистокинин, секретин, увеличивают выход инсулина. Основной эффект гормона – снижение уровня глюкозы в крови.

Под воздействием инсулина происходит уменьшение концентрации глюкозы в плазме крови (гипогликемия). Это связано с тем, что инсулин способствует превращению глюкозы в гликоген в печени и мышцах (гликогенез). Он активирует ферменты, участвующие в превращении глюкозы в гликоген печени, и ингибирует ферменты, расщепляющие гликоген.

Энергетический гомеостаз обеспечивает энергетические потребности тканей с использованием различных субстратов. Т.к. углеводы являются основным источником энергии для многих тканей и единственным для анаэробных, регуляция углеводного обмена является важной составляющей энергетического гомеостаза организма.

Регуляция углеводного обмена осуществляется на 3 уровнях:

    центральный.

    межорганный.

    клеточный (метаболический).

1. Центральный уровень регуляции углеводного обмена

Центральный уровень регуляции осуществляется с участием нейроэндокринной системы и регулирует гомеостаз глюкозы в крови и интенсивность метаболизма углеводов в тканях. К основным гормонам, поддерживающим нормальный уровень глюкозы в крови 3,3-5,5 мМоль/л, относят инсулин и глюкагон. На уровень глюкозы влияют также гормоны адаптации – адреналин, глюкокортикоиды и другие гормоны: тиреоидные, СДГ, АКТГ и т.д.

2. Межорганный уровень регуляции углеводного обмена

Глюкозо-лактатный цикл (цикл Кори) Глюкозо-аланиновый цикл

Глюкозо-лактатный цикл не требует наличие кислорода, функционирует всегда, обеспечивает: 1) утилизацию лактата, образующегося в анаэробных условиях (скелетные мышцы, эритроциты), что предотвращает лактоацидоз; 2) синтез глюкозы (печень).

Глюкозо-аланиновый цикл функционирует в мышцах при голодании. При дефиците глюкозы, АТФ синтезируется за счет распад белков и катаболизма аминокислот в аэробных условиях, при этом глюкозо-аланиновый цикл обеспечивает: 1) удаление азота из мышц в нетоксичной форме; 2) синтез глюкозы (печень).

3. Клеточный (метаболический) уровень регуляции углеводного обмена

Метаболический уровень регуляции углеводного обмена осуществляется с участием метаболитов и поддерживает гомеостаз углеводов внутри клетки. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Например, избыток глюкозы стимулирует гликогенез, липогенез и синтез аминокислот, дефицит глюкозы - глюконеогенез. Дефицит АТФ стимулирует катаболизм глюкозы, а избыток – наоборот ингибирует.

IV . Педфак . Возрастные особенности ПФШ и ГНГ, значение.

Лекция № 10 Тема: Структура и обмен инсулина, его рецепторов, транспорт глюкозы. Механизм действия и метаболические эффекты инсулина.

Гормоны поджелудочной железы

Поджелудочная железа выполняет в орга­низме две важнейшие функции: экзокринную и эндокринную. Экзокринную функцию выполняет ацинарная часть поджелудочной железы, она синтезирует и секретирует панкреатический сок. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной железы, которые секретируют пептидные гормоны, уча­ствующие в регуляции многих процессов в организме.1-2 млн. островков Лангерганса составляют 1-2% массы поджелудочной железы.

В островковой части поджелудочной железы выделяют 4 типа клеток, секретирующих разные гормоны: А- (или α-) клетки (25%) секретируют глюкагон, В- (или β-) клетки (70%) - инсулин, D- (или δ-) клетки (<5%) - соматостатин, F-клетки (следовые количества) секретируют панкреатический полипептид. Глюкагон и инсулин в основном влияют на углеводный обмен, соматостатин локально регулирует секрецию инсулина и глюкагона, панкреатический полипептид влияет на секрецию пищеварительных соков. Гормоны поджелудочной железы выделяются в панкреатическую вену, которая впадает в воротную. Это имеет большое значение т.к. печень является главной мишенью глюкагона и инсулина.

Строение инсулина

Инсулин - полипептид, состоящий из двух цепей. Цепь А содержит 21 ами­нокислотный остаток, цепь В - 30 аминокислотных остатков. В инсулине 3 дисульфидных мостика, 2 соединяют цепь А и В, 1 соединяет 6 и 11 остатки в А цепи.

Инсулин может существовать в форме: мономера, димера и гексамера. Гексамерная структура инсулина стабилизиру­ется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека. Бычий инсулин отличается от инсулина че­ловека на 3 аминокислоты, а инсулин свиньи отличается только на 1 ами­нокислоту (ала вместо тре на С конце В-цепи).

Во многих положениях А и В цепи встре­чаются замены, не оказывающие влияния на биологическую активность гормона. В положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, т.к. эти участки обеспечивают формирование активного центра инсулина.

Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последова­тельного протеолиза превращаются в активный гормон.

1. На рибосомах ЭПР синтезируется препроинсулин (L-В-С-А, 110 аминокислот), биосинтез его начинается с образования гидрофобного сигнального пептида L (24 аминокислот), который направляет растущую цепь в просвет ЭПР.

2. В просвет ЭПР препроинсулин превращается в проинсулин при отщеплении эндопептидазой I сиг­нального пептида. Цистеины в проинсулине окисляются с образованием 3 дисульфидных мостиков, проинсулин становиться «сложным», имеет 5% активности от инсулина.

3. «Сложный» проинсулин (В-С-А, 86 аминокислот) поступает в аппарат Гольджи, где под действи­ем эндопептидазы II расщепляется с образованием инсулина (В-А, 51 аминокислот) и С-пептида (31 аминокислота).

4. Инсулин и С-пептид включаются в секреторные гранулы, где инсулин соединяется с цинком, обра­зуя димеры и гексамеры. В секреторной грануле содержание инсулина и С-пептида составляет 94%, проинсулина, интермедиатов и цинка - 6%.

5. Зрелые гранулы сли­ваются с плазматической мембраной, а инсу­лин и С-пептид попадают во внеклеточную жидкость и далее в кровь. В крови олигомеры инсулина распадают­ся. За сутки в кровь секретируется 40-50 ед. инсулина, это составляет 20% от его общего запаса в поджелудочной железе. Секреция инсулина энергозависимый процесс, происходит с участием микротубулярно-ворсинчатой системы.

Схема биосинтеза инсулина в β-клетках островков Лангерганса

ЭПР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсу­лина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.

Ген инсулина находиться в 11 хромосоме. Выявлены 3 мутации этого гена, у носителей низкая активность инсулина, отмечается гиперинсулинемия, нет инсулинорезистентности.

Регуляция синтеза и секреции инсулина

Синтез инсулина индуцируют глюкоза и секреция инсулина. Репрессирует секрецию жирные кислоты.

Секрецию инсулина стимулируют: 1. глюкоза (главный регулятор), аминокислоты (особенно лей и арг); 2. гормоны ЖКТ(β-адренергические агонисты, через цАМФ):ГИП , секретин, холецистокинин, гастрин, энтероглюкагон; 3. длительно высокие концентрации СТГ, кортизола, эстрогенов, прогестинов, плацентарного лактогена, ТТГ, АКТГ; 4. глюкагон; 5. повышение К + или Са 2+ в крови; 6. лекарства, производные сульфонилмочевины (глибенкламид).

Под влиянием соматостатина секреция инсулина понижается. β-клетки также находятся под влиянием автономной нервной системы. Парасимпатическая часть (холинергические окончания блуждающего нерва) стимулирует выделение инсулина. Симпатическая часть (адреналин через α 2 -адренорецепторы) подавляет выделение инсулина.

Секреция инсулина осуществляется с участием нескольких систем, в которых основная роль принадлежит Са 2+ и цАМФ.

Поступление Са 2+ в цитоплазму контролируется несколькими механизмами:

1). При повышении концентрации глюкозы в крови выше 6-9 ммоль/л, она при участии ГЛЮТ-1 и ГЛЮТ-2 поступает в β-клетки и фосфорилируется глюкокиназой. При этом концентрация глюкозо-6ф в клетке прямо пропорциональна концентрации глюкозы в крови. Глюкозо-6ф окисляется с образованием АТФ. АТФ образуется также при окислении аминокислот и жирных кислот. Чем больше в β-клетке глюкозы, аминокислот, жирных кислот тем больше из них образуется АТФ. АТФ ингибирует на мембране АТФ-зависимые калиевые каналы, калий накапливается в цитоплазме и вызывает деполяризацию клеточной мембраны, что стимулирует открытие потенциалзависимых Са 2+ -каналов и поступление Са 2+ в цитоплазму.

2). Гормоны, активирующие инозитолтрифосфатную систему (ТТГ), выпускают Са 2+ из митохондрий и ЭПР.

цАМФ образуется из АТФ с участием АЦ, которая активируется гормонами ЖКТ, ТТГ, АКТГ, глюкагоном и Са 2+ -кальмодулиновым комплексом.

цАМФ и Са 2+ стимулируют полимеризацию субъединиц в микротубулы (микроканальцы). Влияние цАМФ на микроканальцевую систему опосредуется через фосфорилирование ПК А микроканальцевых белков. Микроканальцы способны сокращаться и расслабляться, перемещая гранулы по направлению к плазматической мембране обеспечивая экзоцитоз.

Секреция инсулина в ответ на стимуляцию глюкозой представляет собой двухфазную реакцию, состоящую из стадии быстрого, раннего высвобождения инсулина, называемую первой фазой секреции (начинается через 1 мин, продолжается 5-10 мин), и второй фазы (продолжительность ее до 25-30 мин).

Транспорт инсулина. Инсулин водорастворим и не имеет белка-переносчика в плазме. Т 1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин, проинсулина 20-23 мин.

Разрушение инсулина происходит под дей­ствием инсулинзависимой протеиназы и глутатион-инсулин-трансгидрогеназы в тканях мишенях: в основном в пе­чени (за 1 проход через печень разрушается около 50% инсулина), в меньшей степени в почках и плаценте.

Энергетический гомеостаз обеспечивает энергетические потребности тканей с использованием различных субстратов. Т.к. углеводы являются основным источником энергии для многих тканей и единственным для анаэробных, регуляция углеводного обмена является важной составляющей энергетического гомеостаза организма.

Регуляция углеводного обмена осуществляется на 3 уровнях:

    центральный.

    межорганный.

    клеточный (метаболический).

1. Центральный уровень регуляции углеводного обмена

Центральный уровень регуляции осуществляется с участием нейроэндокринной системы и регулирует гомеостаз глюкозы в крови и интенсивность метаболизма углеводов в тканях. К основным гормонам, поддерживающим нормальный уровень глюкозы в крови 3,3-5,5 мМоль/л, относят инсулин и глюкагон. На уровень глюкозы влияют также гормоны адаптации – адреналин, глюкокортикоиды и другие гормоны: тиреоидные, СДГ, АКТГ и т.д.

2. Межорганный уровень регуляции углеводного обмена

Глюкозо-лактатный цикл (цикл Кори) Глюкозо-аланиновый цикл

Глюкозо-лактатный цикл не требует наличие кислорода, функционирует всегда, обеспечивает: 1) утилизацию лактата, образующегося в анаэробных условиях (скелетные мышцы, эритроциты), что предотвращает лактоацидоз; 2) синтез глюкозы (печень).

Глюкозо-аланиновый цикл функционирует в мышцах при голодании. При дефиците глюкозы, АТФ синтезируется за счет распад белков и катаболизма аминокислот в аэробных условиях, при этом глюкозо-аланиновый цикл обеспечивает: 1) удаление азота из мышц в нетоксичной форме; 2) синтез глюкозы (печень).

3. Клеточный (метаболический) уровень регуляции углеводного обмена

Метаболический уровень регуляции углеводного обмена осуществляется с участием метаболитов и поддерживает гомеостаз углеводов внутри клетки. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Например, избыток глюкозы стимулирует гликогенез, липогенез и синтез аминокислот, дефицит глюкозы - глюконеогенез. Дефицит АТФ стимулирует катаболизм глюкозы, а избыток – наоборот ингибирует.

IV . Педфак . Возрастные особенности ПФШ и ГНГ, значение.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2005 г

ЛЕКЦИЯ № 10

Тема: Структура и обмен инсулина, его рецепторов, транспорт глюкозы.

Механизм действия и метаболические эффекты инсулина.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.

Гормоны поджелудочной железы

Поджелудочная железа выполняет в орга­низме две важнейшие функции: экзокринную и эндокринную. Экзокринную функцию выполняет ацинарная часть поджелудочной железы, она синтезирует и секретирует панкреатический сок. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной железы, которые секретируют пептидные гормоны, уча­ствующие в регуляции многих процессов в организме.1-2 млн. островков Лангерганса составляют 1-2% массы поджелудочной железы.

В островковой части поджелудочной железы выделяют 4 типа клеток, секретирующих разные гормоны: А- (или α-) клетки (25%) секретируют глюкагон, В- (или β-) клетки (70%) - инсулин, D- (или δ-) клетки (<5%) - соматостатин, F-клетки (следовые количества) секретируют панкреатический полипептид. Глюкагон и инсулин в основном влияют на углеводный обмен, соматостатин локально регулирует секрецию инсулина и глюкагона, панкреатический полипептид влияет на секрецию пищеварительных соков. Гормоны поджелудочной железы выделяются в панкреатическую вену, которая впадает в воротную. Это имеет большое значение т.к. печень является главной мишенью глюкагона и инсулина.

Строение инсулина

Инсулин - полипептид, состоящий из двух цепей. Цепь А содержит 21 ами­нокислотный остаток, цепь В - 30 аминокислотных остатков. В инсулине 3 дисульфидных мостика, 2 соединяют цепь А и В, 1 соединяет 6 и 11 остатки в А цепи.

Инсулин может существовать в форме: мономера, димера и гексамера. Гексамерная структура инсулина стабилизиру­ется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека. Бычий инсулин отличается от инсулина че­ловека на 3 аминокислоты, а инсулин свиньи отличается только на 1 ами­нокислоту (ала вместо тре на С конце В-цепи).

Во многих положениях А и В цепи встре­чаются замены, не оказывающие влияния на биологическую активность гормона. В положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, т.к. эти участки обеспечивают формирование активного центра инсулина.

Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последова­тельного протеолиза превращаются в активный гормон.

1. На рибосомах ЭПР синтезируется препроинсулин (L-В-С-А, 110 аминокислот), биосинтез его начинается с образования гидрофобного сигнального пептида L (24 аминокислот), который направляет растущую цепь в просвет ЭПР.

2. В просвет ЭПР препроинсулин превращается в проинсулин при отщеплении эндопептидазой I сиг­нального пептида. Цистеины в проинсулине окисляются с образованием 3 дисульфидных мостиков, проинсулин становиться «сложным», имеет 5% активности от инсулина.

3. «Сложный» проинсулин (В-С-А, 86 аминокислот) поступает в аппарат Гольджи, где под действи­ем эндопептидазы II расщепляется с образованием инсулина (В-А, 51 аминокислот) и С-пептида (31 аминокислота).

4. Инсулин и С-пептид включаются в секреторные гранулы, где инсулин соединяется с цинком, обра­зуя димеры и гексамеры. В секреторной грануле содержание инсулина и С-пептида составляет 94%, проинсулина, интермедиатов и цинка - 6%.

5. Зрелые гранулы сли­ваются с плазматической мембраной, а инсу­лин и С-пептид попадают во внеклеточную жидкость и далее в кровь. В крови олигомеры инсулина распадают­ся. За сутки в кровь секретируется 40-50 ед. инсулина, это составляет 20% от его общего запаса в поджелудочной железе. Секреция инсулина энергозависимый процесс, происходит с участием микротубулярно-ворсинчатой системы.

Схема биосинтеза инсулина в β-клетках островков Лангерганса

ЭПР - эндоплазматический ретикулум. 1 - образование сигнального пептида; 2 - синтез препроинсулина; 3 - отщепление сигнального пептида; 4 - транспорт проинсу­лина в аппарат Гольджи; 5 - превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 - секреция инсулина и С-пептида.

Ген инсулина находиться в 11 хромосоме. Выявлены 3 мутации этого гена, у носителей низкая активность инсулина, отмечается гиперинсулинемия, нет инсулинорезистентности.

Регуляция синтеза и секреции инсулина

Синтез инсулина индуцируют глюкоза и секреция инсулина. Репрессирует секрецию жирные кислоты.

Секрецию инсулина стимулируют: 1. глюкоза (главный регулятор), аминокислоты (особенно лей и арг); 2. гормоны ЖКТ(β-адренергические агонисты, через цАМФ):ГИП , секретин, холецистокинин, гастрин, энтероглюкагон; 3. длительно высокие концентрации СТГ, кортизола, эстрогенов, прогестинов, плацентарного лактогена, ТТГ, АКТГ; 4. глюкагон; 5. повышение К + или Са 2+ в крови; 6. лекарства, производные сульфонилмочевины (глибенкламид).

Под влиянием соматостатина секреция инсулина понижается. β-клетки также находятся под влиянием автономной нервной системы. Парасимпатическая часть (холинергические окончания блуждающего нерва) стимулирует выделение инсулина. Симпатическая часть (адреналин через α 2 -адренорецепторы) подавляет выделение инсулина.

Секреция инсулина осуществляется с участием нескольких систем, в которых основная роль принадлежит Са 2+ и цАМФ.

Поступление Са 2+ в цитоплазму контролируется несколькими механизмами:

1). При повышении концентрации глюкозы в крови выше 6-9 ммоль/л, она при участии ГЛЮТ-1 и ГЛЮТ-2 поступает в β-клетки и фосфорилируется глюкокиназой. При этом концентрация глюкозо-6ф в клетке прямо пропорциональна концентрации глюкозы в крови. Глюкозо-6ф окисляется с образованием АТФ. АТФ образуется также при окислении аминокислот и жирных кислот. Чем больше в β-клетке глюкозы, аминокислот, жирных кислот тем больше из них образуется АТФ. АТФ ингибирует на мембране АТФ-зависимые калиевые каналы, калий накапливается в цитоплазме и вызывает деполяризацию клеточной мембраны, что стимулирует открытие потенциалзависимых Са 2+ -каналов и поступление Са 2+ в цитоплазму.

2). Гормоны, активирующие инозитолтрифосфатную систему (ТТГ), выпускают Са 2+ из митохондрий и ЭПР.

цАМФ образуется из АТФ с участием АЦ, которая активируется гормонами ЖКТ, ТТГ, АКТГ, глюкагоном и Са 2+ -кальмодулиновым комплексом.

цАМФ и Са 2+ стимулируют полимеризацию субъединиц в микротубулы (микроканальцы). Влияние цАМФ на микроканальцевую систему опосредуется через фосфорилирование ПК А микроканальцевых белков. Микроканальцы способны сокращаться и расслабляться, перемещая гранулы по направлению к плазматической мембране обеспечивая экзоцитоз.

Секреция инсулина в ответ на стимуляцию глюкозой представляет собой двухфазную реакцию, состоящую из стадии быстрого, раннего высвобождения инсулина, называемую первой фазой секреции (начинается через 1 мин, продолжается 5-10 мин), и второй фазы (продолжительность ее до 25-30 мин).

Транспорт инсулина. Инсулин водорастворим и не имеет белка-переносчика в плазме. Т 1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин, проинсулина 20-23 мин.

Разрушение инсулина происходит под дей­ствием инсулинзависимой протеиназы и глутатион-инсулин-трансгидрогеназы в тканях мишенях: в основном в пе­чени (за 1 проход через печень разрушается около 50% инсулина), в меньшей степени в почках и плаценте.