Поплавковый выключатель уровня воды для управления насосом. Выбираем датчик уровня воды в резервуаре и емкости Автоматический контроль уровня воды в баке

Недавно наткнулся в интернете на один видеоролик, где воплотили мою детскую мечту в реальность На видео продемонстрировали, как можно собрать устройство автоматического наполнения емкости водой. Всю работу очень наглядно продемонстрировали, однако схему не показали.

Дело в том, что в детстве в летнее время мне часто приходилось поливать огород и у меня всегда появлялись идеи по автоматизации данного процесса, но воплотить в реальность свои мысли так и не получилось. Сегодня я исполню часть своей мечты, правда, пока только теоретически.

Представим такую ситуацию: у вас на даче или дома есть емкость с водой, для полива огорода или еще для каких-то целей. В эту емкость вы закачиваете воду с помощью насоса. Чтобы закачать воду, каждый раз приходится включать насос и следить пока емкость не заполнится водой. Заполнение емкости водой можно очень легко и достаточно дешево автоматизировать.

Ниже представлена структурная картинка нашего устройства.

Для автоматизации наполнения емкости водой нам придется немного доработать емкость. На верхней части бочки устанавливается стержень высотой не менее глубины емкости, на котором закрепляются два геркона. К стержню также крепится подвижный шток с поплавком, который перемещается в зависимости от уровня воды в емкости. На штоке закреплен постоянный магнит, для управления герконами.

На следующей картинке можно увидеть пример выполнения стержня и подвижного штока.

А сейчас самое интересное: схема автоматического наполнения емкости водой.

Для реализации данного устройства нам понадобится автоматический выключатель для защиты насоса, электромагнитный контактор для включения и отключения насоса и два геркона (контакт магнитоуправляемый герметизированный) для управления контактором.

Нижний геркон должен быть замыкающий, верхний – размыкающий. К примеру, нам вполне подойдет геркон МКС-27103, т.к. он имеет переключающий контакт. Для сигнализации нижнего уровня в схеме используется нормально разомкнутый контакт, для сигнализации верхнего уровня – нормально замкнутый контакт геркона. В момент когда уровень воды в емкости достигнет критического значения, магнит расположится в одном уровне с нижним герконом, который под действием магнитного поля переключит контакт и тем самым отправит сигнал на включение насоса. После этого поплавок начнет подниматься до верхнего уровня, где верхний геркон отключит насос.

В данной схеме не реализован ручной режим, хотя следовало бы предусмотреть на случай выхода из строя наших уровнемеров. Проще всего взять кнопку с фиксацией для ручного управления насосом. Я думаю, как включить кнопку в полученную схему, у вас не составит труда.

Разумеется можно купить готовые уровнемеры и не изобретать велосипед, тем боле что промышленностью они выпускаются. Однако, один такой уровнемер вам обойдется не менее 30$, а один геркон МКС-27103 стоит 2-3$.

Вот так можно сделать автоматическое наполнение емкости водой. Еще у меня идея была, чтобы с этой емкости вода уходила на полив (например помидоров, огурцов) через дренажные трубки. Возможно в теплицах так и делают.

Надеюсь и у меня когда-нибудь появится дача, где я смогу воплотить полностью свою мечту, не потому что я люблю в огороде копаться, просто я люблю, чтобы за меня другие работали, я имею ввиду устройства

Приветствую!

Решил закинуть маленькую статейку — вдруг кому пригодиться, как мне))

Соорудил небольшой простенький девайс для поддержания постоянного уровня воды в емкости. Схемка взята из интернета и повторена лишь с добавлением элементарного параметрического стабилизатора напряжения, т.к. по техзаданию питаться девайс должен от 24В, а вся схема и реле на 12В.

Датчик уровня воды трехэлектродный.

Предлагается схема устройства управления насосом. Эта схема из набора, который предлагает «Мастер КИТ». Устройство управления насосом позволит автоматизировать работу дачного насоса, с помощью которого вода поступает в душевой бак. Принцип работы "умного помощника" следующий, когда уровень воды в душевом баке падает ниже определенного уровня L, насос включается и начинает закачивать воду в емкость. Когда уровень воды достигает заданного уровня Н, устройство отключает насос.

Данное устройство можно применить на даче, в загородном доме, коттедже. Схема электрическая принципиальная устройства показана на рисунке.

Схемка проста и не нуждается в настройке.

Вода обладает электрическим сопротивлением. Пока в емкости нет воды, транзисторы Т1 и Т2 закрыты, на коллекторе транзистора Т1 присутствует высокое напряжение. Данное высокое напряжение, поступая через диод D1 на базу транзистора ТЗ, открывает его и транзистор Т4, что приводит к включению исполнительного реле, к силовым контактам которого подключен насос. Насос начинает качать воду в емкость. Светодиод LED при этом включается, индицируя работу насоса. Когда уровень воды достигает датчика L, транзистор Т1 открывается, напряжение на его коллекторе падает. Однако насос продолжает работать, потому что на базу транзистора Т3 подается напряжение через резистор R8 и поддерживает ключ ТЗ-Т4 в открытом состоянии. Когда уровень воды достигает датчика "Н", транзистор Т2 открывается, и на базу транзистора ТЗ поступает низкий уровень. Ключ ТЗ-Т4 закрывается - реле выключается. Лишь когда уровень воды вновь опустится ниже уровня "L", реле включится опять. Конструктивно, устройство выполнено на печатной плате из фольгированного стеклотекстолита размерами 61x41 мм. В качестве датчиков "L" и "Н" можно использовать подручные материалы, например медные водопроводные полудюймовые гайки, прочно прикрепленные к изолированным проводам. Включение устройств. Подключите к плате провода датчиков и расположите их в экспериментальной емкости такой же высоты, как и используемый на даче душевой бак следующим образом: "СОМ" на дне (если емкость железная, то можно соединить этот провод с корпусом емкости); "L" - на желаемом нижнем уровне воды (уровне включения насоса); "Н" - на уровне отключения насоса. Подключите устройство к источнику питания, соблюдая полярность. Сетевое напряжение и насос пока не подключайте. Включите питание. Должны зажечься индикаторный светодиод и "щелкнуть" реле, подключив насос. Налейте воду в емкость. Когда уровень воды достигнет датчика "Н", реле должно отключиться. Вылейте воду из емкости. Когда уровень воды опустится чуть ниже датчика "L", реле должно включиться. Теперь можно окончательно смонтировать датчики на реальном объекте и, соблюдая осторожность, подключить к контактам схемы 220 В и насос.

Преимущество данной схемы над более простыми — это применение реле всего с одним контактом. Практически на всех подобных более простых схемах используется 2 группы контактов.

В схеме возможны замены: транзисторы любые биполярные с указанной проводимостью. Я ставил В9014 и В9015, а вот VT5 в стабилизаторе — КТ805БМ в ТО-220 с небольшим радиатором. Наличие радиатора обязательное — нагрев весьма интенсивен. Я посадил еще и на термопасту. Диоды — любые кремниевые. Конденсаторы — любые с напряжением не ниже 16В для С1,С2 и 40В для С3. Мостик (или диоды в мосту) — на напряжение не ниже напряжения питания и током не менее 200мА. Ток потребления схемы при сработанном реле составил 150мА при напряжении питания 24В. При питании от постоянного тока можно выкинуть мостик. при питании от источника 12В (постоянного) можно убрать всю схему стабилизатора.

Первая версия.

В плате применил комбинацию DIP и SMD компонентов. Версия платы первая, один из девайсов спаян по ней. Плата второго доработана немного: мост убран с платы, предусмотрено применение транзистора в стабилизаторе в корпусе ТО-220, больше элементов SMD, увеличена ширина дорожек.

Диодный мостик запаян на отдельной небольшой платке.

Данная схема предложена для автоматического управления регулирования уровня воды в баке. В нем под известным давлением расположены два электрода, длинный из которых является нижним уровнем, а другой, короткий -верхним. Роль общего электрода играет металлический бак. В баке имеется только один отвод для подачи и отвода воды, насос заполняет бак и одновременно подает воду в систему.
Как видите, схема довольно проста, важным элементом которой является тиристор. Работает схема следующим образом.
Когда в баке вода ниже нижнего уровня, то электрической связи электродов с корпусом отсутствуют. Поэтому напряжение на управляющий контакт тиристора не приходит, тиристор заперт, реле обесточено, нормально замкнутые контакты К1.1 и К1.2 находятся в исходном положении, двигатель работает, насос закачивает в систему и бак воду. Контакт К1.3 находится в разомкнутом положении.
По мере заполнения бака, вода поднимается до нижнего электрода. Появляется электрическая связь через воду нижнего электрода с корпусом бака, который соединен с одним из концов вторичной обмотки трансформатора и анодом тиристора. Но дальше ничего не происходит, потому что связь прерывается с управляющим выводом тиристора из-за разомкнутого контакта К1.3.
Когда вода поднимается до верхнего уровня, управляющий вывод тиристора через токоограничительный резистор соединяется с корпусом бака через воду, соединяется с общим проводом. Тиристор открывается, замыкая цепь катушки К1. Последняя срабатывает, нормально замкнутые контакты К1.1 и К1.2 размыкаются, двигатель останавливается, насос перестает качать воду. Одновременно замыкается пара контактов К1.3, замыкая верхний с нижним уровнем электродов.
По мере расхода воды, уровень в баке станет ниже верхнего, но насос будет молчать, так как теперь связь корпус-вода-электрод-R1 проходит через замкнутый контакт К1.3 и в данном случае задействован нижний электрод.
Как только уровень воды станет ниже нижнего электрода, электрическая цепочка «корпус-вода-электрод» разрывается, тиристор запирается, реле обесточивается, возвращая свои контакты в исходное положение и насос заработает. Весь цикл повторяется.
При неработающем насосе, уровень воды в баке колеблется между верхним и нижним уровнями электродов, а реле К1 в это время находится в рабочем состоянии, держа контакты К1.1 и К1.2 отключенными.
В схеме предусмотрен предохранитель FU1 от токовой перегрузки и коротких замыканий, включенный в первичную обмотку трансформатора Т1. Диод VD1 выпрямляет ток, проходящий через обмотку реле, а также, что немаловажно, через воду между корпусом и электродами. Тиристор включает и отключает реле К1. Реле подбирается экспериментальным путем, по напряжению, либо напряжение подбирается на вторичной обмотке. Также надо подобрать сопротивление резистора R1 для четкого срабатывания тиристора. Это зависит от проводимости воды.

По материалам журнала "Моделист-конструктор"

Большую емкость для воды на даче или приусадебном участке можно использовать для полива или водоснабжения дома. При ее наполнении нет необходимости постоянно забираться вверх по лестнице и целый день следить за уровнем — это вполне могут сделать электронные датчики.

  • Продвинутые дачные и фермерские хозяйства, занимающиеся выращиванием плодоовощной продукции, в своей работе используют системы полива наподобие капельной. Для обеспечения автоматической работы поливочного оборудования конструкция требует наличия большой емкости для сбора и хранения воды. Ее заполнение обычно производят погружными водяными насосами в скважине, при этом требуется отслеживать уровень давления воды для насоса и ее количество в водосборном баке. В этом случае необходимо управлять работой насоса, то есть включать его при достижении определенного уровня воды в накопительной емкости и отключать в случае полного заполнения водяного бака. Эти функции можно реализовать с помощью поплавковых датчиков.
Рис. 1 Принцип действия поплавкового датчика уровня (ПДУ)
  • Большой накопительный бак для воды может потребоваться и для водоснабжения дома, если дебит водозаборной емкости очень мал или производительность самого насоса не может обеспечить потребление воды, соответствующее необходимому уровню. В этом случае устройства контроля уровня жидкости для автоматической работы системы водоснабжения также необходимы.
  • Систему контроля за уровнем жидкости можно использовать и при работе с устройствами, в которых отсутствует защита от сухого хода скважинного насоса, датчик давления воды или поплавковый выключатель при откачивании грунтовых вод из подвалов и помещений с уровнем ниже поверхности земли.

Все датчики уровня воды для управления насосом можно разделить на две большие группы: контактные и бесконтактные. Бесконтактные способы в основном используются в промышленном производстве и делятся на оптические, магнитные, емкостные, ультразвуковые и т.п. виды. Датчики устанавливаются на стенки водяных баков или непосредственно погружаются в контролируемые жидкости, электронные компоненты помещены в шкаф управления.


Рис. 2 Виды датчиков уровня

В быту наибольшее применение нашли недорогие контактные устройства поплавкового типа, отслеживающий элемент которых выполнен на герконах. В зависимости от расположения в емкости с водой подобные устройства делятся на две группы.

Вертикальные. В подобном устройстве в вертикальном штоке расположены герконовые элементы, а сам поплавок с кольцевым магнитом перемещается вдоль трубки и включает или отключает герконы.

Горизонтальные. Крепятся за верхний край сбоку стены резервуара, при наполнении емкости поплавок с магнитом поднимается на шарнирном рычаге и подходит к геркону. Устройство срабатывает и коммутирует электрическую цепь, помещенную в шкаф управления, она отключает питание электронасоса.


Рис. 3 Вертикальные и горизонтальные герконовые датчики

Устройство герконового переключателя

Основной исполнительный элемент герконового датчика — герконовый выключатель. Устройство представляет собой маленький стеклянный баллон, наполненный инертным газом или с откачанным воздухом. Газ или вакуум препятствуют образованию искр и окислению контактной группы. Внутри колбы находятся замкнутые контакты из ферромагнитного сплава прямоугольного сечения (пермаллоевая проволока) с золотым или серебряным напылением. При попадании в магнитный поток контакты герконового переключателя намагничиваются и отталкиваются друг от друга — происходит размыкание цепи, по которой течет электрический ток.


Рис. 4 Внешний вид герконовых переключателей

Самые распространенное виды герконовых выключателей действует на замыкание, то есть при намагничивании их контакты соединяются друг с другом и электрическая цепь замыкается. Герконовые переключатели могут иметь два вывода для замыкания размыкания цепи или три, если работают с переключением цепей электрического тока. Низковольтная схема, коммутирующая электропитание насоса, обычно помещается в шкаф управления.

Схема подключения герконового датчика уровня воды

Герконовые переключатели являются маломощными устройствами и неспособны коммутировать большие токи, поэтому они не могут быть использованы непосредственно для отключения и включения насоса. Обычно они задействованы в низковольтной схеме коммутации работы мощного реле насоса, помещенной в шкаф управления.


Рис. 5 Электрическая схема управления электронасосом с помощью герконового поплавкового датчика

На рисунке представлена простейшая схема с датчиком, реализующая управление дренажным насосом в зависимости от водного уровня при откачке, состоящая из двух герконов SV1 и SV2.

При достижении жидкостью верхнего уровня магнит с поплавком включает верхний геркон SV1 и на катушку реле P1 подается напряжение. Ее контакты замыкаются, происходит параллельное подключение к геркону и реле самозахватывается.

Функция самозахватывания не дает возможность отключиться питанию катушки реле при размыкании контактов включающей кнопки (в нашем случае это геркон SV1). Это происходит в том случае, если нагрузка реле и его катушка подключены в одну цепь.

Напряжение поступает на катушку мощного реле в цепи электропитания насоса, его контакты замыкаются и электронасос начинает работать. При падении уровня воды и достижении поплавка с магнитом нижнего геркона SV2 он включается и на катушку реле P1 с другой стороны также подается положительный потенциал, ток перестает течь и реле P1 отключается. Это вызывает отсутствие тока в катушке силового реле P2 и как следствие прекращение подачи напряжения питания на электронасос.


Рис. 6 Поплавковые вертикальные датчики уровня воды

Аналогичная схема управления насосом, помещенная в шкаф управления, может быть использована при отслеживании уровня в емкости с жидкостью, если герконы поменять местами, то есть SV2 будет находиться вверху и отключать насос, а SV1 в глубине бака с водой его включать.

Датчики уровня могут быть использованы в быту для автоматизации процесса при заполнении больших емкостей водой при помощи водяных электронасосов. Наиболее просты в установке и эксплуатации герконовые виды, выпускаемые промышленностью в виде вертикальных поплавков на штангах и горизонтальных конструкций.

В одной из статей я увидел предлагаемый одним из дачников вариант схемы автоматического поддержания уровня воды в накопительном баке , который, если честно, меня встревожил. Эта конструкция имеет ряд недостатков: она сложна в изготовлении, требует определенного уровня квалификации при работе с электронными компонентами и достаточно затратна – один трансформатор чего стоит.

Но самый главный ее недостаток – это низкий уровень электробезопасности. В случае пробоя изоляции трансформатора напряжение сети через электроды-датчики попадет в воду и передастся на бак, что может привести к поражению людей электрическим током.

Предлагаю во всех отношениях простой и очень дешевый вариант схемы автоматического поддержания уровня воды (см. рис 1).

Она состоит только из одного реле и двух датчиков. В качестве первого компонента необходимо использовать двухпозиционное реле К1, а в роли второго – герконы G1 (датчик нижнего уровня воды) и G2 (датчик верхнего уровня воды), расположенные на вертикально установленной вне бака направляю щей для постоянного магнита.

Причем датчик G1 должен быть расположен над G2. Расстояние между ними будет соответствовать допускаемому перепаду между верхним и нижним уровнями воды е баке. Датчики срабатывают при воздействии на них постоянного магнита Q, соединенного с поплавком из пенопласта, расположенным внутри бака на своей направляющей. Эта связь может быть выполнена, например, с помощью рыболовной лески через шкив, установленный в верхней части бака.

Эскиз устройства автоматического поддержания уровня воды в накопительном баке представлен на рис 2. Для информации о включенном положении двигателя насоса в схеме имеется светодиодный индикатор HL

Схема работает следующим образом. В исходном состоянии (воды в баке нет и под воздействием магнита замкнут контакт геркона G1) реле К1 необходимо принудительно привести в состояние, при котором будут замкнуты его контакт К1.2Л и соединенные параллельно контакты К1.3, К1.4 К1.5, К1.6, К1.7, К1.8 и К1.9. Двигатель М насоса начнет работать, и в подтверждение этого будет светиться светодиодный индикатор HL.

При наполнении бака водой поплавок поднимается и контакт датчика G1 размыкается.

При наполнении бака до верхнего уровня магнит, двигающийся по направляющей вниз, воздействует на датчик G2, и тогда его контакт замкнется. Реле К1 переключится, его контакты К1-2, К1.3, К1ЛК1.5,К1.6,К1.7,К1Ли К1.9 разомкнутся, а контакт К1.1, наоборот, замкнется. И тогда двигатель насоса остановится и перестанет светиться светодиодный индикатор HL

При понижении уровня воды в баке до нижнего уровня поплавок опускается, и магнит, двигающийся по направляющей вверх, воздействует на датчик G1 и замыкает его контакт. Реле К1 переключится в исходное положение, его контакты К1.2, К1.3, К1.4, К1.5, К1.6, К1.7, К1.8 и К1.9 замкнутся.

Двигатель насоса снова начнет работать (и, соответственно, загорится светодиодный индикатор HL). Эти циклы будут повторяться до тех пор, пока на схему подается напряжение.

На самом деле, уйма времени ушла на объяснение того, как это все работает. На деле же все устройство проще пареной репы, а раз нет в нем никаких сложных узлов, то и работать оно будет безотказно и долго. А теперь о о материалах и технических характеристиках компонентов съемы.

  1. В качестве реле К1 я использовал реле типа РП-9, рассчитанное на 220 В переменного напряжения. Можно поставить и РП-12 (тоже на 220 В), но при большой мощности двигателя насоса в схему придется добавить промежуточный контактор.
  2. В качестве датчиков G1 и G2 можно использовать любые герконы, рассчитанные на ток коммутации не менее 100 мА.
  3. В качестве индикатора HL подойдут любые индикаторы, например, светодиодные типа СКЛ12 или AD22-22DS на 220 В.
  4. В качестве направляющей для магнита можно использовать отрезок пластмассового кабельного канала с прямоугольным профилем 10×15 мм.
  5. В качестве поплавка -кусок пенопласта с прямоугольным отверстием 12×17 мм в центре.
  6. В качестве направляющей для поплавка можно использовать также отрезок пластмассового кабельного канала с прямоугольным профилем 10×15 мм.
  7. В качестве магнитного элемента можно использовать магнит из магнитной мебельной защелки, к которому примагничена и приклеена полоска жести с отверстием для лески.
  8. Датчики (герконы) можно прикрепить к направляющей обычным скотчем.
  9. В качестве элементов защиты используются предохранители FU1 и FU1 любого типа на ток 5 А.
  10. Для обесточивания схемы устройства используется спаренный выключатель с контактами SA1 и SA2.

Схема автоматического поддержания воды в накопительном баке

  • Рис 1 (вверху). Принципиальная схема устройства автоматического поддержания уровня воды в накопительном баке.
  • Рис 2. Эскиз устройства автоматаческого поддержания уровня воды в накопительном баке.