Обеспечит высокую скорость и маневренность. Олимпиада по истории авиации и воздухоплавания. В авиации США

Основные понятия

Устойчивость и управляемость относятся к числу особенно важных физических свойств самолета. От них в значительной мере зависят безопасность полетов, простота и точность пилотирования и полная реализация летчиком технических возможностей самолета.

При изучении устойчивости и управляемости самолета его представляют как тело, движущееся поступательно под действием внешних сил и вращающееся под действием моментов этих сил.

Для установившегося полёта необходимо, чтобы силы и моменты были взаимно уравновешены.

Если по каким-то причинам это равновесие нарушается, то центр масс самолёта станет совершать неравномерное движение по криволинейной траектории, а сам самолёт начнёт вращаться.

Осями вращения самолёта принято считать оси связанной системы координат с началом координат
в центре масс самолета. Ось ОХ располагается в плоскости симметрии самолета и направлена по его продольной оси. Ось ОУ перпендикулярна оси ОХ, а ось ОZ перпендикулярна плоскости ХОУ и направлена
в сторону правого полукрыла.

Моменты, вращающие самолет вокруг этих осей, имеют следующие названия:

М х – момент крена или поперечный момент;

М Y – момент рысканья или путевой момент;

М z – момент тангажа или продольный момент.

Момент М z , увеличивающий угол атаки, называется кабрирующим, а момент М z , вызывающий уменьшение угла атаки, - пикирующим.

Рис. 6.1. Моменты, действующие на самолет

Для определения положительного направления моментов используется следующее правило:

если из начала координат направить взгляд вдоль положительного направления соответствующей оси, то вращение по часовой стрелке будет положительным.

Таким образом,

· момент М z положителен в случае кабрирования,

· момент М х положителен в случае крена на правое полукрыло,

· момент М Y положителен при развороте самолета влево.

Положительному отклонению руля соответствует отрицательный момент и наоборот. Следовательно, за положительное отклонение рулей следует считать:

· руль высоты – вниз,

· руль поворота – вправо,

· правый элерон – вниз.

Положение самолета в пространстве определяется тремя углами – тангажа, крена и рысканья.

Углом крена называется угол между линией горизонта и осью ОZ,

углом скольжения – угол между вектором скорости и плоскостью симметрии самолета,

углом тангажа – угол между хордой крыла или осью фюзеляжа и линией горизонта.

Угол крена положителен, если самолет находится в правом крене.

Угол скольжения положителен при скольжении на правое полукрыло.

Угол тангажа считается положительным, если нос самолета поднят над горизонтом.

Равновесием называется такое состояние самолёта, при котором все силы и моменты, действующие на него, взаимно уравновешены и самолёт совершает равномерное прямолинейное движение.

Из механики известны 3 вида равновесия:

a) устойчивое б) безразличное в) неустойчивое;

Рис. 6.2. Виды равновесия тела

В таких же видах равновесия может находиться
и самолёт.

Продольное равновесие - это состояние, при котором самолёт не имеет стремления к изменению угла атаки.

Путевое равновесие - самолёт не имеет стремления к изменению направления полёта.

Поперечное равновесие - самолёт не имеет стремления к изменению угла крена.

Равновесие самолёта может быть нарушено из-за:

1) нарушения режимов работы двигателя или их отказа в полёте;

2) обледенения самолёта;

3) полёта в неспокойном воздухе;

4) несинхронного отклонения механизации;

5) разрушения частей самолёта;

6) срывного обтекания крыла, оперения.

Обеспечение определённого положения летящего самолёта по отношению к траектории движения или по отношению к земным предметам называется балансировкой самолёта.

В полёте балансировка самолёта достигается отклонением органов управления.

Устойчивостью самолёта называется его способность самостоятельно без вмешательства лётчика восстанавливать случайно нарушенное равновесие.

По словам Н.Е.Жуковского устойчивость - это прочность движения.

Для практики летной эксплуатации балансировка
и устойчивость самолёта не равноценны. На самолёте, на котором не обеспечена балансировка, летать нельзя, тогда как на неустойчивом самолёте полёт возможен.

Оценка устойчивости движения самолета производится с помощью показателей статической и динамической устойчивости.

Под статической устойчивостью понимается его тенденция к восстановлению исходного равновесного состояния после случайного нарушения равновесия. Если при нарушении равновесия возникают силы
и моменты, стремящиеся восстановить равновесие, то самолет статически устойчив.

При определении динамической устойчивости оценивается уже не начальная тенденция к устранению возмущения, а характер протекания возмущенного движения самолета. Для обеспечения динамической устойчивости возмущенное движение самолета должно быть быстро затухающим.

Таким образом, самолет устойчив при наличии:

· статической устойчивости;

· хороших демпфирующих свойств самолета, способствующих интенсивному затуханию его колебаний в возмущенном движении.

К количественным показателям статической устойчивости самолета относятся степень продольной, путевой и поперечной статической устойчивости.

К характеристикам динамической устойчивости относятся показатели качества процесса уменьшения (затухания) возмущений: время затухания отклонений, максимальные значения отклонений, характер движения в процессе уменьшения отклонений.

Под управляемостью самолёта понимается его способность исполнять по воле лётчика любой маневр, предусмотренный техническими условиями для данного типа самолёта.

От управляемости самолета в значительной мере зависит и его маневренность.

Маневренностью самолета называют его способность изменять за определенный промежуток времени скорость, высоту и направление полета.

Управляемость самолета тесно связана с его устойчивостью. Управляемость при хорошей устойчивости обеспечивает летчику простоту управления, а в случае необходимости позволяет быстро исправить случайную ошибку, допущенную в процессе управления,
а также легко возвратить самолет к заданным условиям балансировки при воздействии на него внешних возмущений.

Устойчивость и управляемость самолета должны находиться в определенном соотношении.

Если самолет обладает большой устойчивостью,
то усилия при управлении самолетом чрезмерно велики и пилот при маневрировании будет быстро
утомляться. О таком самолете говорят, что он тяжел в управлении.

Излишне легкое управление также недопустимо, так как затрудняет точное дозирование отклонений рычагов управления и может вызвать раскачку самолета.

Балансировка, устойчивость и управляемость самолёта разделяется на продольную и боковую.

Боковая устойчивость и управляемость подразделяются на поперечную и путевую (флюгерную).

Продольная устойчивость

Продольной устойчивостью называется способность самолёта без вмешательства пилота восстанавливать нарушенное продольное равновесие (устойчивость относительно ОZ)

Продольная устойчивость обеспечивается:

1) соответствующими размерами горизонтального оперения г.о., площадь которого зависит от площади крыла;

2) плечом горизонтального оперения L г.о, т.е. расстоянием от центра масс самолёта до центра давления г.о.

3) Центровкой , т.е. расстоянием от носка средней аэродинамической хорды (САХ) до центра масс самолёта, выраженным в процентах от величины САХ:


Рис. 6.3. Определение средней аэродинамической хорды

САХ (b a ) - хорда некоторого условного прямоугольного крыла, которое при такой же, как у реального крыла, площади имеет такие же коэффициенты аэродинамических сил и моментов.

Величину и положение САХ чаще всего находят графически.

Положение центра масс самолёта, а значит, его центровки зависит от:

1) загрузки самолёта и изменения этой нагрузки в полёте;

2) размещения пассажиров и выработки топлива.

При уменьшении центровки увеличивается устойчивость, но уменьшается управляемость.

При увеличении центровки уменьшается устойчивость, но увеличивается управляемость.

Поэтому передний предел центровок устанавливается из условия получения безопасной посадочной скорости и достаточной управляемости, а задний предел - из условия обеспечения достаточной устойчивости.

Обеспечение продольной устойчивости по углу атаки

Нарушение продольного равновесия выражается
в изменении угла атаки и скорости полета, причем угол атаки изменяется значительно быстрее, чем скорость. Поэтому в первый момент после нарушения равновесия проявляется устойчивость самолета по углу атаки (по перегрузке).

При нарушении продольного равновесия самолета угол атаки изменяется на величину и вызывает изменение подъемной силы на величину , которая складывается из приращений подъемной силы крыла и горизонтального оперения:

Крыло и самолёт в целом обладают важным свойством, заключающимся в том, что при изменении угла атаки происходит такое перераспределение аэродинамической нагрузки, что равнодействующая его прироста проходит через одну и ту же точку F, удалённую от носка САХ на расстояние Х f .

Рис.6.4. Обеспечение продольной устойчивости самолета

Точка приложения приращения подъемной силы , вызванного изменением угла атаки при неизменной скорости, называется фокусом .

Степень продольной статической устойчивости
самолета определяется взаимным расположением центра масс и фокуса самолета.

Положение фокуса при безотрывном обтекании не зависит от угла атаки.

Положение центра масс, т.е. центровка самолета, определяется в процессе проектирования компоновкой самолета, а при эксплуатации – заправкой или выработкой топлива, загрузкой и т.п. Меняя центровку самолета, можно изменять степень его продольной статической устойчивости. Существует определенный диапазон центровок, в пределах которого можно размещать центр масс самолета.

Если грузы на самолете разместить так, чтобы центр масс самолета совпадал с его фокусом, самолет будет безразличен к нарушению равновесия. Центровка в этом случае называется нейтральной .

Смещение центра масс относительно нейтральной центровки вперед обеспечивает самолету продольную статическую устойчивость, а смещение ц.м. назад делает его статически неустойчивым.

Таким образом, для обеспечения продольной устойчивости самолета его центр масс должен находиться впереди фокуса.

В этом случае при случайном изменении угла атаки появляется стабилизирующий момент a, возвращающий самолет на заданный угол атаки (рис.6.4).

Для смещения фокуса за центр масс и применяют горизонтальное оперение.

Расстояние между центром масс и фокусом, выраженное в долях САХ, называется запасом устойчивости по перегрузке или запасом центровки :

Существует минимально-допустимый запас устойчивости, который должен быть равен не менее 3% САХ.

Положение ц.м., при котором обеспечивается минимально-допустимый запас центровки, называется предельно задней центровкой . При такой центровке самолет еще обладает устойчивостью, обеспечивающей безопасность полета. Разумеется, что задняя
эксплуатационная центровка должна быть меньше предельно допустимой.

Допустимое смещение ц.м. самолета вперед определяется по условиям балансировки самолета.
Наихудшим в смысле балансировки является режим захода на посадку при малых скоростях, предельно допустимых углах атаки и выпущенной механизации.
Поэтому предельно передняя центровка определяется из условия обеспечения балансировки самолета на посадочном режиме.

Для неманевренных самолетов величина запаса центровки должна составлять 10–12% САХ.

При переходе с дозвуковых режимов на сверхзвуковые фокус самолета смещается назад, запас центровки увеличивается в несколько раз и продольная статическая устойчивость резко возрастает.

Балансировочные кривые

Величина продольного момента М z , возникающего при нарушении продольного равновесия, зависит от изменения угла атаки Δα. Эта зависимость называется балансировочной кривой .


Мz

Рис. 6.5. Балансировочные кривые:

а) устойчивый самолет, б) безразличный самолет,
в) неустойчивый самолет

Угол атаки, при котором M z = 0, называется балансировочным углом атаки α .

На балансировочном угле атаки самолёт находится в состоянии продольного равновесия.

На углах устойчивый самолет создает стабилизирующий момент - (момент пикирования), неустойчивый – дестабилизирующий + , безразличный самолет не создает , т.е. имеет множество балансировочных углов атаки.

Путевая устойчивость самолета

Путевая (флюгерная) устойчивость – это способность самолета без вмешательства пилота устранять скольжение, т. е. устанавливаться «против потока», сохраняя заданное направление движения.

Рис. 6.6. Путевая устойчивость самолета

Обеспечивается путевая устойчивость соответствующими размерами вертикального оперения S в.о.
и плечом вертикального оперения L в.о, т.е. расстоянием от центра давления в.о. до центра масс самолета.

Под действием М возм самолет вращается вокруг оси OY, но его ц.м. по инерции сохраняет еще направление движения и самолет обтекается потоком под
углом скольжения β. В результате несимметричного обтекания возникает боковая сила Z, приложенная
в боковом фокусе. Самолет под действием силы Z стремится развернуться подобно флюгеру в сторону крыла, на которое он скользит.

В.о. смещает боковой фокус за ц.м. самолета. Этим обеспечивается создание стабилизирующего путевого момента ΔM Y =Zb.

Степень путевой статической устойчивости определяется величиной производной коэффициента момента рысканья по углу скольжения m .

Физически m определяет величину прироста коэффициента момента рысканья, если угол скольжения изменяется на 1 .

У самолета, обладающего путевой устойчивостью он отрицателен. Таким образом, при скольжении на правое крыло (положительное ), появляется путевой момент, вращающий самолет вправо, т.е. коэффициент m отрицательный.

Изменение угла атаки, выпуск механизации незначительно влияют на путевую устойчивость. В диапазоне чисел М от 0,2 до 0,9 степень путевой устойчивости практически не меняется.

Маневренностью самолета называется его способность изменять вектор скорости полета по величине и направлению.

Маневренные свойства реализуются летчиком при боевом маневрировании, которое состоит из отдельных законченных или незаконченных фигур пилотажа, непрерывно следующих друг за другом.

Маневренность является одним из важнейших качеств боевого самолета любого рода авиации. Она позволяет успешно вести воздушный бой, преодолевать ПВО противника, атаковать наземные цели, строить, перестраивать и распускать боевой порядок (строй) самолетов, выводить на объект в заданное время и т. д.

Особое и, можно сказать, решающее значение имеет маневренность для фронтового истребителя, ведущего воздушный бой с истербителем (истребителем-бомбардировщиком) противника. Действительно, заняв выгодное тактическое положение по отношению к противнику, можно его сбить одной-двумя ракетами или огнем даже из единственной пушки. Наоборот, если выгодное положение займет противник (например, «повиснет на хвосте»), то в такой ситуации не поможет любое количество ракет и пушек. Высокая маневренность позволяет также производить успешный выход из воздушного боя и отрыв от противника.

ПОКАЗАТЕЛИ МАНЕВРЕННОСТИ

В самом общем случае маневренность самолета можно полностью охарактеризовать секундным векторным приращением скорости. Пусть в начальный момент времени величина и направление скорости самолета изображается вектором V1 (рис. 1), а через одну секунду - вектором V2; тогда V2=V1+ΔV, где ΔV - секундное векторное приращение скорости.

Рис. 1. Секундное векторное приращение скорости

На рис. 2 изображена область возможных секундных векторных приращений скорости для некоторого самолета при его маневре в горизонтальной плоскости. Физический смысл графика состоит в том, что через одну секунду конца векторов ΔV и V2 могут оказаться только внутри области, ограниченной линией а-б-в-г-д-е. При располагаемой тяге двигателей Рр конец вектора ΔV может оказаться только на границе а-б-в-г, на которой можно отметить следующие возможные варианты маневрирования:

  • а - разгон по прямой,
  • б - разворот с разгоном,
  • в - установившийся разворот,
  • г - форсированный разворот с торможением.

При нулевой тяге и выпущенных тормозных щитках конец вектора ΔV может оказаться через секунду только на границе д-е, например, в точках:

  • д - энергичный разворот с торможением,
  • е - торможение по прямой.

При промежуточной тяге конец вектора ΔV может оказаться в любой точке между границами а-б-в-г и д-е. Отрезок г-д соответствует разворотам при Сyдоп с различной тягой.

Непонимание того факта, что маневренность определяется секундным векторным приращением скорости, т. е. величиной ΔV, иногда приводит к неправильной оценке того или иного самолета. Например, перед войной 1941-1945 гг. некоторые летчики считали, что наш старый истребитель И-16 обладал более высокими маневренными свойствами, чем новые самолеты Як-1, МиГ-3 и ЛаГГ-3. Однако в маневренных воздушных боях Як-1 проявил себя лучше, чем И-16. В чем дело? Оказывается, И-16 мог быстро «поворачиваться», но его секундные приращения ΔV были гораздо меньше, чем у Як-1 (рис. 3); т. е. фактически Як-1 обладал более высокими маневренными свойствами, если вопрос не рассматривать узко, с точки зрения только одной «поворотливости». Аналогично можно показать, что, например, самолет МиГ-21 маневреннее самолета МиГ-17.

Области возможных приращений ΔV (рис. 2 и 3) хорошо иллюстрируют физический смысл понятия маневренности, т. е. дают качественную картину явления, но не позволяют производить количественный анализ, для которого привлекаются различного рода частные и обобщенные показатели маневренности.

Секундное векторное приращение скорости ΔV связано с перегрузками следующей зависимостью:

За счет земного ускорения g все самолеты получают одинаковое приращение скорости ΔV (9,8 м/с², вертикально вниз). Боковая перегрузка nz при маневрировании обычно не используется, поэтому маневренность самолета полностью характеризуется двумя перегрузками - nx и ny (перегрузка - векторная величина, но в дальнейшем знак вектора «->» будет опускаться).

Перегрузки nх и nу являются, таким образом, общими показателями маневренности .

С этими перегрузками связаны все частные показатели:

  • rг - радиус разворота (виража) в горизонтальной плоскости;
  • wг - угловая скорость разворота в горизонтальной плоскости;
  • rв - радиус маневра в вертикальной плоскости;
  • время разворота на заданный угол;
  • wв - угловая скорость поворота траектории в вертикальной плоскости;
  • jx - ускорение в горизонтальном полете;
  • Vy - вертикальная скорость при установившемся подъеме;
  • Vyэ - скорость набора энергетической высоты и пр.

ПЕРЕГРУЗКИ

Нормальной перегрузкой ny называется отношение алгебраической суммы подъемной силы и вертикальной составляющей силы тяги (в поточной системе координат) к весу самолета:

Примечание 1. При движении по земле в создании нормальной перегрузки участвует и сила реакции земли.

Примечание 2. Самописцы САРПП регистрируют перегрузки в связанной системе координат, в которой

На самолетах обычной схемы величина Ру сравнительно мала и ею пренебрегают. Тогда нормальной перегрузкой будет отношение подъемной силы к весу самолета:

Располагаемой нормальной перегрузкой nyр называется наибольшая перегрузка, которую можно использовать в полете с соблюдением условий безопасности.

Если в последнюю формулу подставить располагаемый коэффициент подъемной силы Cyр, то полученная перегрузка и будет располагаемой.

nyр=Cyр*S*q/G (2)

В полете величина Cyр, как уже условились, может ограничиваться по сваливанию, тряске, подхвату (и тогда Cyр=Cyдоп) или по управляемости (и тогда Cyр=Cyf). Кроме того, величина nyр может ограничиваться по условиям прочности самолета, т. е. в любом случае nyр не может быть больше максимальной эксплуатационной перегрузки nyэ макс.

К названию перегрузки nyр иногда добавляют слово «кратковременная».

Используя формулу (2) и функцию Cyр(M) можно получить зависимость располагаемой перегрузки nyр от числа М и высоты полета, которая изображена графически на рис. 4 (пример). Заметим, что содержание рисунков 4,а и 4,6 совершенно одинаковое. Верхний график обычно используется для различных расчетов. Однако для летного состава удобнее график в координатах М-Н (нижний), на котором линии постоянных располагаемых перегрузок проведены прямо внутри диапазона высот и скоростей полета самолета. Проанализируем рис. 4,6.

Линия nyр=1, очевидно, является уже известной нам границей горизонтального полета. Линия nyр=7 является границей, правее и ниже которой может произойти превышение максимальной эксплуатационной перегрузки (в нашем примере nyэ макс=7).

Линии постоянных располагаемых перегрузок проходят таким образом, что nyp2/nyp1=p2/p1 т. е. между двумя любыми линиями разница в высоте такова, что отношение давлений равно отношению перегрузок.

Исходя из этого, располагаемую перегрузку можно найти, имея на диапазоне высот и скоростей только одну границу горизонтального полета.

Пусть, например, требуется определить nyр при М=1 и H=14 км (в точке А на рис. 4,6). Решение: находим высоту точки В (20 км) и давление на этой высоте (5760 Н/м2), а также давление на заданной высоте 14 км (14 750 Н/м2); искомая перегрузка в точке А будет nyр=14 750/5760 = 2,56.

Если известно, что график на рис. 4 построен для веса самолета G1 а нам требуется располагаемая перегрузка для веса G2, то пересчет производится по очевидной пропорции:

Вывод. Имея границу горизонтального полета (линию nyp1=1), построенную для веса G1, можно определить располагаемую перегрузку на любой высоте и скорости полета для любого веса G2, используя пропорцию

nyp2/nyp1=(p2/p1)*(G1/G2) (3)

Но в любом случае используемая в полете перегрузка не должна быть больше максимальной эксплуатационной. Строго говоря, для самолета, подверженного в полете большим деформациям, формула (3) не всегда справедлива. Однако к самолетам-истребителям это замечание обычно не относится. По величине nyp при самых энергичных неустановившихся маневрах можно определить такие частные характеристики маневренности самолета, как текущие радиусы rг и rв, текущие угловые скорости wг и wв.

Предельной по тяге нормальной перегрузкой nyпр называется такая наибольшая перегрузка, при которой лобовое сопротивление Q становится равным тяге Рр и при этом nx=0. К названию этой перегрузки иногда добавляют слово «длительная».

Вычисляется предельная по тяге перегрузка следующим образом:

  • для заданной высоты и числа М находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при nyпр имеем Pр=Q=Cx*S*q, откуда можно найти Сх;
  • из сетки поляр по известным М и Сx находим Су;
  • вычисляем подъемную силу Y=Су*S*q;
  • вычисляем перегрузку ny=Y/G, которая и будет предельной по тяге, так как при расчетах мы исходили из равенства Рр=Q.

Второй метод расчета применяется, когда поляры самолета есть квадратичные параболы и когда вместо этих поляр в описании самолета даются кривые Сх0(М) и А(М):

  • находим тягу Рр;
  • запишем Рр = Cр*S*q, где Ср коэффициент тяги;
  • по условию имеем Рр = Ср*S*q=Q=Cх*Q*S*q+(A*G²n²yпр)/(S*q), откуда:

Индуктивное сопротивление пропорционально квадрату перегрузки, т. е. Qи=Qи¹*ny² (где Qи¹ - индуктивное сопротивление при nу=1). Поэтому, исходя из равенства Рр=Qo+Qи, можно записать выражение для предельной перегрузки и в таком виде:

Зависимость предельной перегрузки от числа М и высоты полета изображена графически на рис. 5.5 (пример взят из книги ).

Можно заметить, что линий nyпр=1 на рис. 5. является уже известной нам границей установившегося горизонтального полета.

В стратосфере температура воздуха постоянна и тяга пропорциональна атмосферному давлению, т. е. Рp2/Рp1=р2/p1 (здесь коэффициент тяги Ср=const), поэтому в соответствии с формулой (5.4) при заданном числе М в стратосфере имеет место пропорция:

Следовательно, предельную по тяге перегрузку на любой высоте более 11 км можно определить по давлению р1 на линии статических потолков, где nyпр1=1. Ниже 11 км пропорция (5.6) не соблюдается, так как тяга при уменьшении высоты полета растет медленнее, чем давление (вследствие увеличения температуры воздуха), и величина коэффициента тяги Ср падает. Поэтому для высот 0-11 км расчет предельных по тяге перегрузок приходится производить обычным порядком, т. е. с использованием высотно-скоростных характеристик двигателя.

По величине nyпр можно найти такие частные характеристики маневренности самолета, как радиус rг, угловую скорость wг, время tf установившегося виража, а также г, w и t любого маневра, выполняемого при постоянной энергии (прл Pр=Q).

Продольной перегрузкой nх называется отношение разности между силой тяги (считая Рх=Р) и лобовым сопротивлением к весу самолета

Примечание При движении по земле к сопротивлению следует добавить еще и силу трения колес.

Если в последнюю формулу подставить располагаемую тягу двигателей Рр, то получим так называемую располагаемую продольную перегрузку :

Рис. 5.5. Предельные по тяге перегрузки самолета F-4C «Фантом»; форсаж, масса 17,6 m

Расчет располагаемой продольной перегрузки при произвольном значении nу производим следующим образом:

  • находим тягу Рр (по высотно-скоростным характеристикам двигателя);
  • при заданной нормальной перегрузке ny вычисляем лобовое сопротивление следующим путем:
    ny->Y->Сy->Сx->Q;
  • по формуле (5.7) вычисляем nxр.

Если поляра - квадратичная парабола, то можно воспользоваться выражением Q=Q0+Qи¹*ny², в результате чего формула (5.7) примет вид

Вспомним, что при ny=nyпр ямеет место равенство

Подставив это выражение в предыдущее и разервув получим окончательную формулу

Если нас интересует величина располагаемой продольной перегрузки для горизонтального полета, т. е. для ny=1, то формула (5.8) приобретает вид

На рис. 5.6 в качестве примера приведена зависимость nxр¹ от М и Н для самолета F-4C «Фантом». Можно заметить, что кривые nxр¹(M, Н) в другом масштабе примерно повторяют ход кривых nyпр(М, Н), а линия nxр¹=0 точно совпадает с линией nyпр=1. Это и понятно, так как обе эти перегрузки связаны с тяговооруженностью самолета.

По величине nxр¹ можно определить такие частные характеристики маневренности самолета, как ускорение при горизонтальном разгоне jx, вертикальную скорость установившегося подъема Vy, скорость набора энергетической высоты Vyэ в неустановившемся прямолинейном подъеме (снижении) с изменением скорости.

Рис 5 6 Располагаемые продольные перегрузки в горизонтальном полете самолета F-4C «Фантом»; форсаж, масса 17,6 т

8. Все рассмотренные характерные перегрузки (пУ9, пупр, Я*Р> ^лгр1) часто изображаются в виде графика, приведенного на рис. 5.7. Он называется графиком обобщенных характеристик маневренности самолета. По рис. 5.7 для заданной высоты Hi при любом числе М можно найти пур (на линии Сур или п^макс). %Пр (на горизонтальной оси, т. е. при пхр = 0), Лхр1 (при пу=) и пХ9 (при любой перегрузке пу). Обобщенные характеристики наиболее удобны для различного рода расчетов, так как с них можно непосредственно снять любую величину, но они не наглядны ввиду многочисленности этих графиков и кривых на них (для каждой высоты нужно иметь отдельный график, подобный изображенному на рис. 5.7). Рис 5 7 Обобщенные характеристики маневренности самолета на высоте Hi (пример) Чтобы составить полное и наглядное представление о маневренности самолета, достаточно иметь три графиками р (М, Н) -как на рис. 5.4,6; пупр (М, Н) -как на рис. 5.5,6; пх р1 (М, Н) - как на рис. 5 6,6.

В заключение рассмотрим вопрос о влиянии эксплуатационных факторов на располагаемую и предельную по тяге нормальные перегрузки и на располагаемую продольную перегрузку

Влияние веса

Как это видно из формул (5.2) и (5.4), располагаемая нормальная перегрузка пур и предельная по тяге нормальная перегрузка nyпр изменяются обратно пропорционально весу самолета (при постоянных М и Н).

Если задана перегрузка ny, то при увеличении веса самолета продольная располагаемая перегрузка nxр уменьшается в соответствии с формулой (5.7), но простой обратной пропорциональности здесь не наблюдается, так как при увеличении G возрастает и лобовое сопротивление Q.

Влияние внешних подвесок

На перечисленные перегрузки внешние подвески могут влиять, во-первых, через свой вес и, во-вторых, через дополнительное увеличение безындуктивной части лобового сопротивления самолета.

На располагаемую нормальную перегрузку nyр сопротивление подвесок не влияет, так как эта перегрузка зависит только от величины располагаемой подъемной силы крыла.

Предельная по тяге перегрузка nyпр, как это видно из формулы (5.4), уменьшается, если увеличивается Схо. Чем больше тяга и больше разность Ср - Схо, тем меньше влияние сопротивления подвесок на предельную перегрузку.

Располагаемая продольная перегрузка лхр при возрастании Схо также уменьшается. Влияние Схо на nxр становится относительно больше при увеличении на маневре перегрузки nу.

Влияние атмосферных условий.

Для определенности рассуждений будем рассматривать увеличение температуры на 1 % при стандартном давлении р; плотность воздуха р при этом будет на 1 % меньше стандартной. Откуда:

  • при заданной воздушной скорости V располагаемая (по Сyр) нормальная перегрузка пур упадет примерно на 1%. Но при заданных индикаторной скорости Vи или числе М перегрузка nур при увеличении температуры не изменится;
  • предельная по тяге нормальная перегрузка nyпр при заданном числе М упадет, так как увеличение температуры на 1 % приводит к падению тяги Рр и коэффициента тяги Ср примерно на 2%;
  • располагаемая продольная перегрузка nхр при увеличении температуры воздуха также уменьшится в соответствии с падением тяги.

Включение форсажа (или его выключение)

Очень сильно влияет на предельную по тяге нормальную перегрузку nyпр, и располагаемую продольную перегрузку nхр. Даже на скоростях и высотах, где Рр >> Qг, увеличение тяги, например, в 2 раза приводит к увеличению nупр примерно в sqrt(2) раз и к увеличению nхр¹ (при nу = 1) примерно в 2 раза.

На скоростях и высотах, где разность Рр - Qг мала (например, вблизи статического потолка), изменение тяги приводит к еще более ощутимому изменению и nупр и nхр¹.

Что касается располагаемой (по Сyр) нормальной перегрузки nyр, то величина тяги на нее почти не влияет (считая Рy=0). Но следует учитывать, что при большей тяге самолет на маневре теряет энергию медленее и, следовательно, более длительное время может находиться на повышенных скоростях, на которых располагаемая перегрузка nyр имеет наибольшую величину.

Разработка и производство авиационных турбореактивных двигателей (ТРД) сегодня является одной из наиболее наукоемких и высокоразвитых в научном и техническом отношении промышленных отраслей. Созданы, доведены до серийного выпуска и внедрены в массовую эксплуатацию авиационные газотурбинные двигатели четырех поколений.

Современные двухконтурные форсированные двигатели вдвое более экономичны по сравнению с первыми ТРД, имеют в 6-8 раз меньший удельный вес, их надежность возросла многократно, а ресурс увеличился более чем на два порядка. Развитие авиадвигателей основано на комплексе фундаментальных и прикладных исследований в аэро- и термодинамике, материаловедении, прочности и многих других областях. В двухконтурных турбореактивных двигателях (ТРДД) четвертого поколения параметры термодинамического цикла достигли весьма высокого уровня: температура газа перед турбиной доходит до 1650-1700 градусов Кельвина, степень повышения давления в компрессоре - до 40.

Еще более совершенны авиационные двигатели нового, пятого поколения, разработка которых ведется всего лишь в странах, обладающих необходимым научно-техническим и производственным потенциалом. Помимо России, только США, Англия и Франция владеют полным циклом создания и выпуска авиационных ГГД. Недаром атрибутом великой державы в наше время считается способность создавать и производить авиационные газотурбинные двигатели.

В свою очередь авиационное двигателестроение, базирующееся на наиболее передовых технологиях, стимулирует развитие всех тех отраслей промышленности, где требуются компактные, мобильные и хорошо управляемые источники энергии, - наземный и водный транспорт, теплоэнергетика, газоперекачка, технологии сушки, очистки, пожаротушения и т.д.

Мощная научная и производственная инфраструктура авиадвигателестроения в нашей стране, включающая уникальную по возможностями воспроизведения условий скоростного и высотного полета экспериментальную базу для стендовых испытаний, формировалась в течение многих десятилетий. Ныне, в условиях экономического кризиса, объемы опытно-конструкторских работ и выпускаемой продукции отечественного авиадвигателестроения упали в 5 и более раз, а численность работников снизилась практически вдвое. Производственные мощности предприятий используются всего на 10-20%. В структуре цены на двигатель затраты на топливо, материалы и энергию выросли в 1,5-2 раза и составляют более 50%, а доля фонда оплаты труда уменьшилась в 3-5 раз - до 4-6%. Поэтому разработка новых двигателей и модернизация серийных, создание научно-технического задела в обеспечение двигателей следующего поколения требует серьезных усилий организационно-финансового характера со стороны как государства, так и промышленности.

В последние 25-30 лет вышли на первый план ряд факторов, оказывающих сильное влияние на состояние и перспективы мирового авиадвигателестроения. Среди них в первую очередь необходимо отметить рост стоимости, увеличение полных сроков разработки и цены авиадвигателей. Этот период связан с развитием двухконтурного двигателя как основного типа ГТД для до- и сверхзвуковой авиации, в результате освоения которого рентабельность и экологические характеристики воздушного транспорта, боевая эффективность военной авиации были намного улучшены. Рост стоимостных показателей авиадвигателей приобретает экспоненциальный характер, при этом от поколения к поколению становится больше доля поисковых исследований по созданию опережающего научно-технического задела (НТЗ). Так, по ориентировочным данным для авиадвигателестроения США, при переходе от четвертого к пятому поколению она возрастает по затратам с 15% до 60%, а по срокам - почти в 2 раза.

Создание опережающего НТЗ по перспективным авиационным двигателям является приоритетным направлением в национальной научно-технической политике индустриально развитых стран Запада. Раннее выявление для выполнения данной задачи технических проблем и путей их решения позволяет существенно снизить затраты на разработку и сертификацию двигателя. Лидирующее положение при этом имеет рождение новых технологий применительно к двигателям военного назначения как наиболее напряженным по параметрам процесса. Программы НТЗ финансируются в основном из средств государственного бюджета.

ОСНОВА НЫНЕШНИХ УСПЕХОВ

Высокий конструктивно-технологический уровень решений, реализуемых в двигателях для боевой авиации, определяет их авангардную роль в развитии авиационного двигателестроения в целом. Двигатели для маневренных самолетов-истребителей характеризуются наивысшим уровнем технического, прежде всего весового совершенства. Само появление авиационного ГТД в конце 30-х годов и его широкое распространение в 40-50-х годах, начавшееся с истребительной авиации, связано с органическими свойствами ТРД - возможностью увеличения тяговой мощности в полетных условиях.

Развитие самолетов-истребителей характеризуется непрерывным ростом тяговооруженности (отношения веса к тяге) как средства обеспечения маневренных свойств и превосходства в воздухе. Именно это обстоятельство определяет непрерывное ужесточение требований к снижению удельного веса двигателей маневренных машин. Благодаря уменьшению удельного веса двигателей от уровня 0,7-0,8 (ТРД первого поколения) до уровня 0,12-013 (ТРДД четвертого поколения) взлетная тяговооруженность увеличилась от 0,3 у реактивных истребителей первого поколения до величины, превышающей 1 у современных истребителей четвертого поколения.

Освоение уже в 50-х годах сверхзвуковой области скоростей полета привело к необходимости обеспечения многорежимности силовых установок самолетов, требования к которой еще более ужесточаются в связи с тенденцией к обеспечению многофункциональности современных боевых машин. Результатом этого в истребительной авиации является тенденция более быстрого снижения удельного веса двигателя по сравнению с ростом тяговооруженности самолета.

Решение сложнейшей научно-технической задачи создания двигателя, сочетающего столь противоположные требования, как малый удельный вес и многорежимность, сделало необходимым освоить схему двухконтурного ТРД с форсажной камерой (ТРДДФ), отличающегося весьма сложным рабочим процессом. Это, в свою очередь, потребовало разработки:

Принципиально новых конструкционных материалов с высокой удельной прочностью (титановые, жаропрочные порошковые и монокристаллические сплавы и др.);

Высокотемпературных кольцевых камер сгорания и высокоперепадных турбин;

Малоступенчатых регулируемых компрессоров с большой работой в ступени;

Электронных цифровых систем управления, интегрированных с системой технической диагностики.

Создание в 70-80-х годах базовых ТРДДФ четвертого поколения РД-ЗЗ (ЛНПО им. В.Я. Климова), АЛ-31Ф (ОАО "Люлька-Сатурн"), Д-30Ф6 (ОАО "Авиадвигатель") для истребителей - крупное научно-техническое достижение отечественного авиадвигателестроения. Исключительные качества данных образцов (низкий удельный вес, сниженное число ступеней лопаточных машин, широкий диапазон условий эксплуатации, устойчивость компрессоров при полете о большими углами атаки, короткая широкодиапазонная форсажная камера с регулируемым соплом, высокие динамические характеристики и отсутствие ограничений на перемещение рычага управления) позволяют считать их наиболее удачными среди современных двигателей маневренных сверхзвуковых машин, о чем свидетельствует общепризнанный успех МиГ-29, Су-27, МиГ-31. К многорежимным двигателям четвертого поколения относятся и ТРДДФ НК-25, НК-32 (ОАО СНТК им. Н.Д. Кузнецова) для самолетов дальней и стратегической авиации - самые мощные в мире.

Отечественные сверхзвуковые многорежимные ТРДДФ четвертого поколения появились при научном обеспечении и непосредственном участии ЦИАМ.

В двигателях нового пятого поколения для маневренных сверхзвуковых самолетов тенденции развития многорежимного ТРДДФ малого веса дополнены новыми требованиями - обеспечение сверхзвукового крейсерского полета, снижение заметности, отклонение вектора тяги при высокой надежности и большом ресурсе. В связи с проблемой закупок на передний план выдвигается задача установления соответствия стоимости двигателя и затрат на его эксплуатацию покупательной способности заказчика.

В 80-х годах В ОАО "Люлька-Сатурн" были начаты работы над ТРДДФ пятого поколения АЛ-41Ф для нового многофункционального истребителя. Концепция и технический облик двигателя нового поколения разработаны на основе поисковых исследований, выполненных совместно ЦИАМ и конструкторскими бюро.

ВКЛАД ИНСТИТУТА

В 80-х годах отечественное двигателестроение вплотную занялось НТЗ, причем данный труд по своим масштабам не уступал зарубежным программам. Однако существенное сокращение бюджетного финансирования привело к отставанию в разработке двигателя пятого поколения и обусловило низкие темпы создания НТЗ для двигателей шестого поколения. Проводимые в ЦИАМ работы по созданию экспериментального НТЗ для двигателей следующего поколения являются приоритетными в тематике института, но из-за недостаточного выделения средств выполняются в ограниченном объеме и низкими темпами. Продолжение этой тенденции приведет к катастрофическому отставанию в развитии отечественных двигателей от мирового уровня.

Современная методология создания двигателей опирается на интеграцию систем трехмерного моделирования, компьютерного проектирования и автоматизированного изготовления, что создает основу для сокращения доли наиболее дорогой компоненты "доводки" - его отработки на опытных образцах. В ЦИАМ внедрены трехмерные методы расчета нестационарных вязких течений на основе решения уравнений Навье-Стокса и обратных задач оптимизации элементов, многодисциплинарные подходы к исследованию газодинамики и теплообмена в дисковых полостях, анализу измерения зазоров в двигателе и решению ряда других проблем. Получило развитие моделирование нестационарных процессов для анализа процессов потери газодинамической устойчивости и флаттера в компрессорах и т.д.

Одной из наиболее сложных является задача освоения высоких температур газа. Применение монокристаллических лопаток с проникающим охлаждением находится в ряду перспективных направлений создания турбин, работающих при температуре газа 2000-2200 градусов Кельвина. ЦИАМ обладает комплексом технологий, необходимых для успешного создания перспективной рабочей лопатки турбины высокого давления. Совместно с ВИАМ и ГНПП "Салют" проводятся исследования по оптимизации конструктивно-технологических решений.

В ЦИАМ разработана высокотемпературная (до 2100 градусов Кельвина) модульная камера сгорания для двигателей с повышенным ресурсом и низким уровнем эмиссии вредных веществ. Многократное увеличение ресурса обеспечивается применением двухстенной перфорированной или сегментной жаровой трубы, что способствует также снижению неравномерности поля температуры на выходе из камеры, турбины.

Один из факторов, обеспечивающих "доступность" двигателя, - уменьшение числа его деталей путем снижения числа ступеней лопаточных машин, что удешевляет цену производства и ремонта.

Развитие компрессоров авиационных двигателей идет в направлении увеличения аэродинамической нагрузки на ступени, благодаря чему уменьшается их число. В то же время обостряется проблема обеспечения вибрационной прочности лопаточных машин из-за таких факторов, как повышение напорности ступеней и применение конструкций с низким демпфированием (моноколеса - "блиски" с лопатками малого удлинения). Для решения проблемы вибрационной прочности разработаны оригинальные методы бесконтактной диагностики колебаний, позволяющие идентифицировать причину их возникновения (резонанс, флаттер, вращающийся срыв).

Разработка и внедрение новых материалов и конструктивно-технологических решений являются решающим фактором в создании двигателей нового поколения. ЦИАМ совместно с Всероссийским институтом авиационных материалов, некоторыми технологическими институтами и ОКБ разработал программу критических (ключевых) технологий, предусматривающую создание высокоэффективных элементов и узлов двигателей на основе использования высокопрочных титановых и никелевых сплавов (монокристаллических, порошковых, интерметаллидов и др.), композиционных материалов, прогрессивных методов литья, сварки, прессования, нанесения покрытий и т.д.

В перспективных системах автоматического управления (САУ) двигателей будут использоваться "интеллектуальные" датчики, исполнительные механизмы и устройства для дозирования топлива, содержащие встроенные процессоры, которые осуществляют первичную обработку и коррекцию данных. При этом упрощается интеграция САУ с системами самолета и системой контроля и диагностики, уменьшается масса соединительных линий и повышается надежность всей системы.

Разработка и внедрение экономически эффективных методов эксплуатации при обеспечении безопасности полетов является важнейшей задачей отечественного двигателестроения. Ее решение основывается на совершенствовании методов управления ресурсами двигателя. Значительные резервы увеличения ресурса связаны с эксплуатацией двигателей по техническому состоянию, где ключевую роль играет совершенствование систем технической диагностики, основными направлениями которого являются реализация в бортовых системах алгоритмов прогнозирования возникновения отказов и автоматизация принятия диагностических решений.

Создание семейств двигателей различной тяги (мощности) и назначения на основе базового изделия и его газогенератора является также одним из наиболее важных путей снижения стоимости жизненного цикла (СЖЦ) и повышения "доступности". Преимущества от унификации за счет создания семейств двигателей проявляются на всех этапах жизненного цикла.

Для реализации этого подхода необходимо наличие у базового двигателя "запаса на развитие", обоснованный выбор которого также осуществляется на основе накопленного НТЗ. Пути всемерного сокращения затрат лежат в основе разработок современной методологии создания двигателей, проводимых в ЦИАМ совместно с промышленностью.

Практика показывает, что современные самолеты состоят на службе не менее 25-30 лет. Расширение в течение этого периода функций, объема и сложности выполненных ими задач обусловливают возрастание взлетного веса машин. Для сохранения и увеличения тяговооруженности необходимо соответствующее увеличение тяги как основного условия обеспечения эксплуатационных характеристик и маневренности. Поэтому одним из актуальных направлений развития семейства является создание модификаций с большей тягой при габаритных ограничениях, налагаемых требованиями взаимозаменяемости с исходной (базовой) моделью двигателя. Это делает необходимым применение новых конструктивно-технологических решений, присущих двигателям нового поколения. Таким образом, и в случае модернизации необходим НТЗ, использование новейших достижений по линии которого придает новой модификации черты двигателя следующего поколения, но при этом ее создание обходится намного дешевле разработки совершенно нового двигателя той же тяги.

ПУТЬ К ШЕСТОМУ ПОКОЛЕНИЮ

Двигатели шестого поколения для боевой авиации, создание которых следует ожидать в 2010-2015 гг., по отношению к пятому поколению должны обладать рядом характеристик, придающих качественно новый уровень боевому самолету. К ним относятся уменьшение удельного веса двигателя в 1,4-2 раза, удельного расхода топлива - на 15-30%, повышение надежности на 60-80%, обеспечение ресурса двигателя, соответствующего 0,5-1 ресурса планера, снижение в 2-3 раза трудоемкости обслуживания и, в совокупности, - более низкое СЖЦ.

Высокий уровень весового и эксплуатационного совершенства двигателя шестого поколения должен быть обеспечен путем реализации в его конструкции предельно высокой температуры газа перед турбиной (2300-2400 градусов Кельвина), применения композиционных материалов для изготовления основных узлов двигателя, интегральной САУ на основе электропривода, "сухой" подвески роторов, принципиально новых технологий изготовления узлов.

Осуществление в США на госбюджетной основе национальной программы ключевых технологий авиадвигателестроения IНРТЕТ, а также развивающих и дополняющих ее иных программ с ориентировкой на глобализацию присутствия американской военной авиации около 2015 г. имеет конечной целью достижение монопольного положения авиатехники и моторостроения Соединенных Штатов в ближайшие десятилетия при вытеснении с рынка производителей авиатехники иных стран, в том числе России, и в первую очередь отечественного авиадвигателестроения - ключевой отрасли авиапромышленности.

Необходима четкая концепция развития отечественного авиадвигателестроения как непременной составной части общей концепции развития авиации нашей страны в виде единого взаимосвязанного комплекса, обеспечивающего разработку, производство и эксплуатацию авиатехники военного назначения и воздушного транспорта. Развитие авиадвигателестроения должно базироваться на принципах сбалансированного, обеспечивающего национальные приоритеты сочетания работ в направлениях модернизации существующих и создания новых двигателей, планомерного накопления НТЗ для двигателей следующего поколения. Необходимо государственное регулирование стоимости топливно-энергетических и материальных ресурсов. Должно быть законодательно закреплено осуществление государственной политики, направленной на поддержку отраслей, использующих высокие технологии. Паритетность и конкурентоспособность двигателей - как новых, так и модернизируемых - будут во многом определяться достижениями в области перспективных ключевых технологий - важнейшей составляющей научно-технического потенциала.

Под маневренностью самолета обычно понимают способ­ность его быстро изменять элементы траек­тории, т. е. величину скорости и направление движения. Та­
кое изменение можно производить как одновременно, так и раз­дельно. Например, при установившемся вираже изменяется только направление движения, а скорость не изменяется. На­оборот, при разгоне и торможении изменяется величина ско­рости, а направление движения остается неизменным.

Каждый тип самолета, в зависимости от его назначения, должен быть в состоянии производить определенные маневры. Так например, маневры тяжелых бомбардировщиков сводятся по существу к неглубоким виражам. Для пикирующих бомбар­дировщиков число маневров сильно возрастает: пикирование и резкий выход из него, глубокий вираж, боевой разворот и др. Особенно велико число маневров у самолета-истребителя.

Программа испытаний на маневренность должна строиться каждый раз конкретно, применительно к типу самолета и предъ­являемым к нему тактико-техническим требованиям. Здесь мож­но только указать на наиболее важные элементарные маневры: серийный установившийся вираж, неустановившийся вираж (раз-

ворот на 180°), горка, боевой разворот, переворот через крыло, бочка, петля и иммельман, пикирование и выход из него, разгон и торможение.

При испытании на маневренность рекомендуется устанавли­вать самопишущие приборы для записи основных параметров - скорости, высоты, угловых скоростей, перегрузок, углов откло­нения органов управления и усилий на них. По записям этих приборов легко оценить важнейшие параметры, характеризую­щие маневр и условия его выполнения: время выполнения ма­невра, начальную и конечную скорость и высоту, максимальные перегрузки и интенсивность выполнения маневра, усилия на ор­ганах управления и потребные углы отклонения, а также «запас» отклонений. Все эти параметры должны быть сравнены с такими

же параметрами для других типов самолетов аналогичного на­значения и с тактико-техническими требованиями к данному типу самолетов.

Для иллюстрации на фиг. 14.8 представлены типичные записи приборов при выполнении иммельмана. Из этой фигуры видно, что время иммельмана равно ~19 сек., макси­мальная перегрузка равна 4,2, выигрыш высоты равен 330 м.

На фиг. 14.9 такие же кривые приведены для случая разгона самолета. Время разгона со скорости 340 км/час до 590 км/час

равно 18,5 сек. Обычно строят величину ———- и отыскивают вре-

мя разгона от начального значения ———— -, обусловленного ин­

Нельзя указать параметры, характеризующие маневренность вообще. Для каждого маневра выбираются определенные пара­метры и величина их сравнивается с рекомендациями и с так- тико-техническими требованиями.

Техника и тактика неразрывно взаимосвязаны. Развитие авиационной техники неизбежно ведет к развитию тактики воздушного боя, а развитие тактики стимулирует создание новых самолетов. Об этом свидетельствует история развития воздушного боя со времен Первой мировой войны и до наших дней.

В воздушном бою с использованием ракет "воздух-воздух" большой и средней дальности (РБД и РСД) истребителю вовсе не нужна высокая маневренность, даже если атакуемый выполняет энергичные оборонительные маневры.

Опыт локальных войн и военных конфликтов второй половины XX столетия показал, что в воздушных боях возможно возникновение таких ситуаций, в которых использование РБД и РСД невозможно. Тогда становится неизбежным ближний маневренный воздушный бой с использованием ракет малой дальности (РМД) и стрелково-пушечного вооружения.

В процессе длительного маневрирования, когда действует правило "кто кого", оружием становится и аэродинамика самолета. Так, если раньше по соображениям безопасности категорически запрещалось выходить на срыв- ные режимы, то в вооруженном конфликте между Сирией и Израилем в 1973 г. летчики часто прибегали к резким маневрам самолетов, порой на грани срыва. Эти воздушные бои показали необходимость снятия ограничений по выходу на срывные режимы полета. Более того, встал вопрос: как сделать управляемым полет на этих режимах? В середине 1970-х годов широкое распространение получила концепция создания "сверхманевренного" самолета.

Маневренностью самолета называется его способность изменять свое положение в пространстве путем изменения вектора скорости по величине или направлению, либо одновременно и по величине и по направлению. Чем быстрее изменяется вектор скорости самолета, тем выше его маневренность. Для характеристики маневренности самолета используются как частные, так и общие показатели маневренности.

К частным показателям относятся угловые скорости и радиусы кривизны элементов маневров (фигур пилотажа), время выполнения маневра (фигуры). Но для характеристики маневренности самолетов классической аэродинамической схемы более приемлемы общие показатели маневренности – перегрузки. Максимальные маневренные возможности таких самолетов определяются располагаемой нормальной перегрузкой, которая, в свою очередь, зависит от высоты и скорости полета. При превышении этой перегрузки возникает опасность сваливания самолета с последующим переходом в штопор. Располагаемой нормальной перегрузке соответствуют максимальные угловые скорости и минимальные радиусы траекторий в плоскости маневра.

Опыт локальных войн показал, что маневрирование даже с выходом на срывные режимы полета не всегда давало желаемый результат. Причина – истребители третьего поколения уже вобрали все резервы "поворотливости". Стало ясно, что для победы в маневренном воздушном бою истребитель должен не только обладать большой "поворотливостью", но и не сваливаться на закритических углах атаки. Возникла проблема обеспечения не только устойчивости, но и управляемости самолета на этих углах атаки. Появился новый термин – "сверхманевренность", под которым понимался управляемый полет на закритических углах атаки.

Такое толкование "сверхманевренности" недостаточно полно отражает существо дела, поскольку не учитывает соотношения с маневренностью самолета на докритических углах атаки. Сверхманевренным можно назвать такой самолет, у которого на режимах полета одинаковых с обычным маневренным самолетом скорости изменения траекторных углов (углов пути? и наклона траектории Q), т.е. траекторные угловые скорости ("поворотливость") больше, чем у последнего, и который способен выполнять управляемый полет на закритических углах атаки.









Совместные работы ОКБ А.И.Микояна, ОКБ П.О.Сухого с ЦАГИ в этом направлении начались еще в 1969 году. Были открыты новые возможности значительного увеличения несущих свойств самолета при достаточно малом приращении сопротивления. Это новое направление, разработанное в ЦАГИ, основывалось на рациональном использовании специально индуцированных вихрей на верхней поверхности крыла, которые генерировались заостренными наплывами в его корневой части. Важным фактором явилось применение автоматически отклоняемых носков крыла, угол отклонения которых постоянно увеличивался с возрастанием угла атаки и, наконец, появилась "уплощенная" форма фюзеляжа, что увеличивало его вклад в подъемную силу (до 40%) и уменьшало дестабилизирующее влияние на путевую устойчивость. Аэродинамическая компоновка носила интегральный характер в сочетании крыла с фюзеляжем посредством зализов большого диаметра. Иллюстрацией к сказанному служит рисунок, на котором сопоставлены схемы самолетов МиГ-29 и Су-27.

В октябре 1977 г летчик-испытатель Федотов А.В. совершил первый полет на опытном маневренном истребителе, будущем МиГ-29. На вооружение МиГ- 29 стал поступать в 1983 г. На международной авиационной выставке в Фарнборо (Англия) в сентябре 1988 г. летчик-испытатель А.Н. Квочур впервые продемонстрировал на этом самолете фигуру "колокол" (взмывание вверх с торможением и последующим движением на хвост).

Большие успехи в создании сверхманевренного самолета были достигнуты в ОКБ П.О.Сухого, в котором создавался самолет Су-27. С 1976 г. работы по этому самолету велись под руководством главного (ныне Генерального) конструктора М.П.Симонова, а с 1980 г. под руководством главного конструктора Кнышева А.И.

Первый самолет этого типа Т-10-1 был по сути "летающей платформой" – базой для создания сверхманевренных самолетов интегральной схемы. При соединении крыла с фюзеляжем по интегральной схеме увеличиваются внутренние объемы, что выгодно с точки зрения размещения топлива, оборудования и вооружения. Фюзеляж и крыло объединяются в одно целое – фюзеляж становится несущим, то есть создает значительную подъемную силу. Это позволяет уменьшить вес конструкции самолета, в частности, крыла. На этом самолете кроме "уплощения" фюзеляжа и интегральной схемы его сочленения с крылом было применено автоматическое отклонение носков крыла.

Принципиально новым в облике сверхманевренного самолета явилась продольная статическая неустойчивость на дозвуковых скоростях полета. Неустойчивый по перегрузке самолет имеет одно существенное преимущество перед устойчивым: для его балансировки требуется на горизонтальном оперении создать подъемную силу, направленную в ту же сторону, что и подъемная сила крыла. Вследствие этого отклонение управляемого стабилизатора для балансировки будет приводить к увеличению подъемной силы самолета. Чтобы управлять неустойчивым по перегрузке самолетом применяются различные автоматические устройства, обеспечивающие желаемую устойчивость и динамические свойства самолета. В такой компоновке значительно увеличивалось аэродинамическое качество и несущие свойства в результате обеспечения продольной балансировки средствами автоматики. При этом была решена проблема обеспечения устойчивости и управляемости путем применения системы улучшения устойчивости и управляемости (СУУ) в составе электродистанционной системы управления (ЭДСУ). Исследовательские полеты на Т-10-1 показали принципиальную возможность выхода на закритические углы атаки.




Следующим шагом в развитии сверхманевренных самолетов было создание Т-10-С, у которого с предыдущим Т-10-1 не было ничего общего, кроме кресла К-36. На самолете Су-27 в июне 1989 года на авиасалоне в Ле- Бурже летчик-испытатель Виктор Пугачев продемонстрировал новую фигуру пилотажа – "Кобру" (динамическое торможение): в горизонтальном полете самолет энергично задрал нос, не изменяя направления полета, увеличил угол атаки до 120° – как бы лег на спину, какое-то мгновение пролетел хвостом вперед, а затем быстро возвратился в горизонтальное положение. "Кобра Пугачева" – так окрестили эту фигуру журналисты, аккредитованные на авиасалоне.

Допустимый угол атаки самолета Су-27 составляет 26 градусов. Почему же, вопреки законам классической аэродинамики, самолет не сваливается на закритических углах атаки, скажем при выполнении той же "Кобры "?

Начнем с того, что при увеличении угла атаки до критического значения возрастают коэффициенты подъемной силы и лобового сопротивления. Увеличивается и проекция силы тяги двигателей на местную вертикаль. При этом уменьшается проекция подъемной силы на местную вертикаль. А при угле атаки, равном 90°, подъемная сила действует в направлении, обратном скорости горизонтального полета, т. е. превращается в силу лобового сопротивления. Сила тяги двигателей в этот момент уравновешивает силу тяжести самолета. По мере роста угла атаки более 90° проекция подъемной силы на вертикаль совпадает по направлению с силой тяжести самолета, а вертикальная составляющая силы тяги двигателей удерживает самолет от падения на хвост. Специалисты говорят, что самолет "висит на струе газов, выходящих из двигателей". По мере увеличения угла атаки более 90° вертикальная составляющая тяги двигателей уменьшается пропорционально синусу угла атаки, а вертикальная составляющая подъемной силы совпадает по направлению с вектором силы тяжести. При углах атаки более 120" вертикальная составляющая силы тяги двигателей самолета Су-27 становится меньше суммы двух сил, действующих по направлению силы тяжести. Этим ограничен угол атаки 120°. Увеличение этого угла грозит падением самолета "на спину". На закритических углах атаки неизбежны срывы воздушного потока с несущих поверхностей. Здесь уже действуют законы нестационарной аэродинамики: аэродинамические силы и моменты зависят не только от углов атаки и скольжения, но и от скорости их изменения. При нестационарном обтекании нарушается боковая балансировка самолета и возникает опасность его сваливания на крыло с последующим переходом в штопор. Однако инертность истребителя, небольшая продолжительность "Кобры" (около 10 секунд) и упреждающие действия летчика рулями позволяют избежать этого.

В настоящее время "Кобра " не может быть боевым маневром. Дело в том, что допустимый угол атаки самолета Су-27 составляет 26° и, перед тем как выйти на "Кобру", летчик должен отключить систему ограничения углов атаки. Конечно, это серьезная угроза безопасности полетов. Поэтому "Кобра Пугачева" – пока что фигура пилотажа, которая эффектно смотрятся на авиашоу, но назвать ее эффективным боевым маневром весьма затруднительно. Тем не менее, выполнение "Кобры" показало принципиальную возможность удержать самолет от сваливания на закритических углах атаки.

Чтобы увеличить угол атаки более 120°, нужно увеличить вертикальную составляющую тяги двигателей. Этого можно достичь либо за счет увеличения тяги двигателей, либо за счет отклонения вектора тяги в направлении оси подъемной силы. Первый путь ведет к утяжелению двигателя и самолета в целом. Поэтому в ОКБ им. П.О. Сухого был избран второй путь. Под руководством главного конструктора Конохова B.C. был создан самолет Су- 37. Прототипом самолета Су-37 является серийный истребитель Су-27 и его глубокая модификация – Су-35.

В ходе испытаний на Су-35 были выполнены такие сверхманевры, как "Кобра", "Хук", "Колокол", связанные с выходом на околонулевые скорости и большие углы атаки. Управление самолетом на околонулевых скоростях практически невозможно из-за недостаточной эффективности аэродинамических органов управления. Летчик на этих режимах полета не может ни влиять на скорость изменения пространственного положения самолета, ни удержать его на больших углах атаки независимо от того, успел ли бортовой локатор захватить цель и ракета сойти с пускового устройства. Стремление улучшить управляемость самолета на околонулевых скоростях привело к воплощению идеи изменения в полете направления тяги двигателей, которое позволяет выполнять управляемые фигуры пилотажа практически на нулевой и даже отрицательной скорости полета без ограничений по углу атаки. Даже штопор на этом самолете – управляемый маневр, а не опасный режим.



Отклоняемые сопла на Су-37





Принципиальным отличием самолета Су-37 от всех предыдущих самолетов семейства Су является отклоняемый вектор тяги (ОВТ) двигателей. Балансировка самолета относительно трех осей при малых скоростях полета на больших углах атаки обеспечивается применением ОВТ и новых органов управления. расположенных как позади центра тяжести самолета, так и впереди его. За счет этих органов может быть обеспечен также более высокий уровень поворотливости истребителя (максимальных угловых скоростей тангажа и рыскания).

На Су-37 можно выполнять фигуры пилотажа, свойственные только этому типу самолета. Например, "Чакру" (чакра – древнее оружие в Индии – металлическое кольцо с режущей кромкой), которая названа именем летчика-испытателя Евгения Фролова. При выполнении этой фигуры самолет с набором высоты уменьшает скорость (как при выполнении фигуры "Колокол") и из этого положения делает "мертвую петлю" на очень малых скоростях полета, практически разворачиваясь вокруг своего хвоста!

Угловую скорость разворота в вертикальной плоскости можно увеличить либо за счет увеличения нормальной перегрузки, либо за счет уменьшения скорости полета, либо одновременно и того, и другого. Увеличить перегрузку можно за счет увеличения вертикальной составляющей силы тяги двигателей, отклоняя век

тор тяги в плоскости симметрии самолета в сторону оси подъемной силы. Чем больше угол отклонения вектора тяги, тем больше сила, искривляющая траекторию полета самолета. Однако с увеличением угла отклонения вектора силы тяги не только увеличивается вертикальная составляющая этой силы, но и уменьшается ее продольная составляющая. Поэтому уменьшается скорость полета и суммарная сила, искривляющая траекторию. Вследствие этого радиус разворота самолета в вертикальной плоскости уменьшается, а угловая скорость – увеличивается. Когда угол тангажа возрастет настолько, что сумма подъемной силы и проекции силы тяги на ось подъемной силы станет больше проекции силы тяжести на ось подъемной силы, траектория самолета начнет искривляться вверх. В верхней точке "Чакры", когда самолет находится в положении "вниз головой", траекторию искривляют уже три силы: подъемная, тяжести и вертикальная составляющая силы тяги двигателей. После выполнения "Чакры" самолет возвращается в нормальное положение "головой вверх".

Если Су-27 на "Кобре Пугачева" выходит на угол атаки 120° и возвращается в исходное положение, то Су- 37 при выполнении "Чакры Фролова" изменяет угол атаки на 360". "Кобра" и "Чакра" – не единственные фигуры, выполняемые "Сухими". В арсенале самолетов этого семейства (от Су-27 до Су-37) есть еще "Колокол", "Двойная Чакра", форсированный разворот на "Кобре". Все это элементная база, на которой строится новая "суховская" технология ближнего маневренного воздушного боя.

В начале 1980-х годов в ответ на создание новых ракет "земля-воздух" и "воздух-воздух" возникла идея создания самолета-"невидимки", обнаружение которого наземными и бортовыми радиолокационными станциями было бы затруднено.

Особенно успешно работы в этом направлении проводились в США, завершившиеся созданием по программе "СТЕЛС" самолета F-117A. В операциях против Ирака "Буря в пустыне" (1991г.) и "Лиса в пустыне" (1998г.) США не потеряли ни одного самолета этого типа. Но во время агрессии НАТО против Югославии самолеты-"невидимки" несли потери как от ЗРК, так и от самолетов-истребителей в ближнем воздушном бою. Угловатые формы самолета F-l 17А делают его малозаметным для радаров, но ухудшают его маневренные характеристики настолько, что в маневренном воздушном бою он проигрывает даже самолетам третьего поколения.

Следующим шагом в развитии самолетов-истребителей было создание малозаметных маневренных самолетов 5-го поколения. В США таким самолетом является истребитель фирмы "Локхид Мартин" F-22A "Рэптор" (Орел- могильник), совершивший свой первый полет 7 августа 1997 года. Началу летных испытаний этого самолета предшествовал длительный цикл работ по экспериментальному самолету YF-22, созданному в рамках программы ATF, начатой в 1981г. Создатели самолетов 5-го поколения в США пришли к выводу, что наиболее рациональным крылом тактического истребителя является крыло прямой стреловидности (КПС). Но стреловидное крыло имеет один существенный недостаток: при сравнительно небольших углах атаки на концах стреловидного крыла возникает срыв потока (концевой эффект стреловидного крыла). Дальнейшее увеличение угла атаки при создании перегрузки (при маневрировании) ведет к распространению срыва потока по всему крылу.



Миг-29М подобно Су-37 должен был получить двигатели с У ВТ




В связи с этим на самолетах со стреловидным крылом на углах атаки меньших, чем критический, возникает опасность сваливания. Этого недостатка лишено крыло обратной стреловидности (КОС) из-за отсутствия концевого эффекта. Следует отметить, что по сравнению с самолетом с крылом прямой стреловидности самолет с КОС имеет значительно большее аэродинамическое качество при маневрировании, лучшую управляемость, особенно на малых скоростях, и малую скорость сваливания. КОС обеспечивает меньшую, чем К ПС, эффективную отражающую поверхность при радиолокационном облучении самолета в переднюю полусферу.

Учитывая эти обстоятельства, в ОКБ им. П.О.Сухого пошли по пути создания малозаметного сверхманевренного истребителя с крылом обратной стреловидности. Идея создания самолета с КОС возникла давно, но не могла быть реализована из-за трудности обеспечения прочности такого крыла. При маневрировании КОС подвергнуто сильным скручивающим нагрузкам. Попытки повышения жесткости традиционной металлической конструкции приводили к недопустимому увеличению веса крыла. Лишь в 1980-х годах, когда появились углепластики, был разработан метод целенаправленной ориентации осей жесткости, компенсирующий рост углов атаки при крутке крыла за счет поворота его сечений.

Первый в мире сверхманевренный самолет с КОС С-37 "Беркут" был создан в ОКБ им. П.О.Сухого. Практически с начала проектирования работы возглавил главный конструктор Михаил Погосян. Ему удалось довести самолет до летного состояния, но в марте 1998 года в связи с назначением на должность директора АВПК "Сухой" Погосян передал "бразды правления" своему заместителю Сергею Короткову.

Самолет С-37 выполнен по схеме "интегральный неустойчивый триплан" со среднерасположенным крылом обратной стреловидности. Его угол стреловидности по передней кромке равен -20 градусам в консольной части и прямой стреловидности в корневой части. Крыло имеет удлинение порядка 4,5 и выполнено почти на 90% из композиционных материалов. Управление по тангажу осуществляется цельноповоротным передним горизонтальным оперением (ПГО) и цельноповоротным основным оперением относительно малой площади.

Известно, что более 70% летчиков плохо переносят длительные перегрузки более четырех единиц даже в про- тивоперегрузочном костюме (ППК). Генеральный конструктор НПО "Звезда" Гай Северин предложил новую концепцию адаптивного катапультного кресла, обеспечивающего летчику возможность ведения маневренного воздушного боя со значительно более высокими, чем на прежних истребителях, перегрузками. Это позволило максимально использовать маневренные преимущества самолета с КОС. Таким образом, если маневренность самолета ограничена физическими возможностями летчика, то адаптивное катапультное кресло позволяет превосходить маневренность самолетов, не оборудованных такими креслами. Это еще одно подтверждение того, что сверхманевренность – это не только управляемый полет на закритических углах атаки, но и маневрирование с перегрузками, превышающими предельные.

25 сентября 1997 г. самолет С-37 "Беркут", пилотируемый летчиком-ис- пытателем Игорем Вотинцевым, совершил первый полет, а в августе 1999г. был представлен на международном авиакосмическом салоне МАКС-99 в г.Жуковском. В настоящее время самолет С-37 проходит заводские испытания и говорить о его возможностях на режиме сверхманевренности еще рано.

Фигуры пилотажа, выполняемые на сверхманевренных самолетах в вертикальной плоскости с выходом на зак- ритические углы атаки, еще не могут быть рекомендованы для использования в воздушном бою. Они могут использоваться в качестве составляющих элементов боевых маневров, выполняемых с интенсивным торможением на закритических углах атаки. При этом самолет выходит на "слепые" скорости сближения, при которых бортовые и наземные РЛС теряют его из виду.

Следует заметить, что одним из недостатков таких маневров является потеря механической энергии, ограничивающая на некоторое время возможности интенсивного маневрирования. В целях уменьшения этого времени могут быть использованы маневры: "переворот, Кобра" и "Полупереворот, Кобра". Еще со Второй мировой войны опыт воздушных боев показывает, что наиболее широкое применение в маневренных воздушных боях находят маневры в горизонтальной и наклонной плоскостях или маневрирование по пространственным траекториям.





Су-30МКИ



Чтобы увеличить "поворотливость" самолета с ОВТ при таком маневрировании, нужно отклонять вектор тяги не только в плоскости симметрии самолета, но и в плоскости, перпендикулярной ей. Особенно наглядно это можно показать на примере виража. Чтобы выполнить вираж (разворот), нужно выдержать строгое соотношение между углом крена и перегрузкой. У обычных маневренных самолетов максимальная угловая скорость в горизонтальной плоскости достигается при располагаемой нормальной перегрузке. Чтобы увеличить эту угловую скорость можно либо увеличить нормальную перегрузку, либо уменьшить скорость полета, либо одновременно сделать и то и другое.

Увеличивать нормальную перегрузку до значений более располагаемой можно за счет увеличения угла атаки вплоть до критического. Увеличивать угол атаки более критического не имеет смысла, поскольку на закритических углах атаки коэффициент подъемной силы (а, следовательно, и подъемная сила) уменьшается и создать перегрузку за счет аэродинамических сил больше той, которая соответствует критическому углу атаки, уже невозможно. Можно пойти по другому пути: увеличить нормальную перегрузку за счет увеличения проекции силы тяги двигателя на ось подъемной силы. В этом случае можно не увеличивать угол атаки более допустимого, что предотвращает опасность сваливания самолета.

Более значительно увеличить скорость разворота самолета в горизонтальной плоскости (увеличить "поворотливость" самолета) можно отклонением тяги двигателя в плоскости, перпендикулярной плоскости симметрии самолета. Тогда проекция силы тяги на продольную ось самолета увеличит силу, искривляющую траекторию в горизонтальной плоскости. Таким способом можно увеличить скорость разворота самолета в горизонтальной плоскости без увеличения нормальной перегрузки.

Увеличивать "поворотливость" самолета можно и за счет уменьшения скорости полета. Но при уменьшении скорости полета уменьшается как располагаемая, так и предельная по тяге нормальная перегрузка. Чтобы при уменьшении скорости полета увеличить нормальную перегрузку, нужно вектор тяги двигателей отклонить в плоскости симметрии самолета в сторону положительного направления оси подъемной силы. Отклонив же вектор тяги еще и в плоскости симметрии в сторону опущенной консоли крыла, можно увеличить "поворотливость" самолета за счет трех факторов: уменьшения скорости, увеличения нормальной перегрузки и увеличения силы, искривляющей траекторию самолета в горизонтальной плоскости.

Изменяя соответствующим образом углы отклонения вектора тяги в двух взаимно перпендикулярных плоскостях, можно увеличить маневренность ("поворотливость") самолета в любой наклонной плоскости. Отклонение вектора тяги в двух взаимно перпендикулярных плоскостях реализовано на многофункциональных истребителях Су-30МК (МКИ, МКК). Комплекс новых фигур пилотажа, продемонстрированный на этом самолете летчиком- испытателем Аверьяновым В.Ю. на авиасалоне МАКС-99, свидетельствует о том, что "сверхманевренность" уже стала новым направлением в развитии маневренных самолетов.

Создание двигателя с ОВТ АЛ-41 и принятие его в качестве базового для самолетов "Су", несомненно, повысит маневренные возможности этих самолетов любой модификации. Естественно напрашивается вопрос: зачем выполнять сложные и опасные маневры с выходом на закритические углы атаки, если за счет отклонения вектора тяги можно значительно увеличить маневренность самолета без угрозы безопасности полетов.

Маневры с выходом на закритические углы атаки значительно расширяют боевые возможности истребителей, а закритические углы атаки являются "аэродинамическим оружием", вопросы боевого применения которого еще не исследованы.



Полковник в отставке Илья КАЧОРОВСКИЙ, военный летчик 1-го класса.