Составление формул веществ по валентности элементов. Как составлять химические формулы

Поговорим о том, как составить химическое уравнение, ведь именно они являются основными элементами данной дисциплины. Благодаря глубокому осознанию всех закономерностей взаимодействий и веществ, можно управлять ими, применять их в различных сферах деятельности.

Теоретические особенности

Составление химических уравнений - важный и ответственный этап, рассматриваемый в восьмом классе общеобразовательных школ. Что должно предшествовать данному этапу? Прежде чем педагог расскажет своим воспитанникам о том, как составить химическое уравнение, важно познакомить школьников с термином «валентность», научить их определять данную величину у металлов и неметаллов, пользуясь таблицей элементов Менделеева.

Составление бинарных формул по валентности

Для того чтобы понять, как составить химическое уравнение по валентности, для начала нужно научиться составлять формулы соединений, состоящих из двух элементов, пользуясь валентностью. Предлагаем алгоритм, который поможет справиться с поставленной задачей. Например, необходимо составить формулу оксида натрия.

Сначала важно учесть, что тот химический элемент, который в названии упоминается последним, в формуле должен располагаться на первом месте. В нашем случае первым будет записываться в формуле натрий, вторым кислород. Напомним, что оксидами называют бинарные соединения, в которых последним (вторым) элементом обязательно должен быть кислород со степенью окисления -2 (валентностью 2). Далее по таблице Менделеева необходимо определить валентности каждого из двух элементов. Для этого используем определенные правила.

Так как натрий - металл, который располагается в главной подгруппе 1 группы, его валентность является неизменной величиной, она равна I.

Кислород - это неметалл, поскольку в оксиде он стоит последним, для определения его валентности мы из восьми (число групп) вычитаем 6 (группу, в которой находится кислород), получаем, что валентность кислорода равна II.

Между определенными валентностями находим наименьшее общее кратное, затем делим его на валентность каждого из элементов, получаем их индексы. Записываем готовую формулу Na 2 O.

Инструкция по составлению уравнения

А теперь подробнее поговорим о том, как составить химическое уравнение. Сначала рассмотрим теоретические моменты, затем перейдем к конкретным примерам. Итак, составление химических уравнений предполагает определенный порядок действий.

  • 1-й этап. Прочитав предложенное задание, необходимо определить, какие именно химические вещества должны присутствовать в левой части уравнения. Между исходными компонентами ставится знак «+».
  • 2-й этап. После знака равенства необходимо составить формулу продукта реакции. При выполнении подобных действий потребуется алгоритм составления формул бинарных соединений, рассмотренный нами выше.
  • 3-й этап. Проверяем количество атомов каждого элемента до и после химического взаимодействия, в случае необходимости ставим дополнительные коэффициенты перед формулами.

Пример реакции горения

Попробуем разобраться в том, как составить химическое уравнение горения магния, пользуясь алгоритмом. В левой части уравнения записываем через сумму магний и кислород. Не забываем о том, что кислород является двухатомной молекулой, поэтому у него необходимо поставить индекс 2. После знака равенства составляем формулу получаемого после реакции продукта. Им будет в котором первым записан магний, а вторым в формуле поставим кислород. Далее по таблице химических элементов определяем валентности. Магний, находящийся во 2 группе (главной подгруппе), имеет постоянную валентность II, у кислорода путем вычитания 8 - 6 также получаем валентность II.

Запись процесса будет иметь вид: Mg+O 2 =MgO.

Для того чтобы уравнение соответствовало закону сохранения массы веществ, необходимо расставить коэффициенты. Сначала проверяем количество кислорода до реакции, после завершения процесса. Так как было 2 атома кислорода, а образовался всего один, в правой части перед формулой оксида магния необходимо добавить коэффициент 2. Далее считаем число атомов магния до и после процесса. В результате взаимодействия получилось 2 магния, следовательно, в левой части перед простым веществом магнием также необходим коэффициент 2.

Итоговый вид реакции: 2Mg+O 2 =2MgO.

Пример реакции замещения

Любой конспект по химии содержит описание разных видов взаимодействий.

В отличие от соединения, в замещении и в левой, и в правой части уравнения будет два вещества. Допустим, необходимо написать реакцию взаимодействия между цинком и Алгоритм написания используем стандартный. Сначала в левой части через сумму пишем цинк и соляную кислоту, в правой части составляем формулы получаемых продуктов реакции. Так как в электрохимическом ряду напряжений металлов цинк располагается до водорода, в данном процессе он вытесняет из кислоты молекулярный водород, образует хлорид цинка. В результате получаем следующую запись: Zn+HCL=ZnCl 2 +H 2 .

Теперь переходим к уравниванию количества атомов каждого элемента. Так как в левой части хлора был один атом, а после взаимодействия их стало два, перед формулой соляной кислоты необходимо поставить коэффициент 2.

В итоге получаем готовое уравнение реакции, соответствующее закону сохранения массы веществ: Zn+2HCL=ZnCl 2 +H 2 .

Заключение

Типичный конспект по химии обязательно содержит несколько химических превращений. Ни один раздел этой науки не ограничивается простым словесным описанием превращений, процессов растворения, выпаривания, обязательно все подтверждается уравнениями. Специфика химии заключается в том, что с все процессы, которые происходят между разными неорганическими либо органическими веществами, можно описать с помощью коэффициентов, индексов.

Чем еще отличается от других наук химия? Химические уравнения помогают не только описывать происходящие превращения, но и проводить по ним количественные вычисления, благодаря которым можно осуществлять лабораторное и промышленное получение разных веществ.

В уроке 13 «» из курса «Химия для чайников » рассмотрим для чего нужны химические уравнения; научимся уравнивать химические реакции, путем правильной расстановки коэффициентов. Данный урок потребует от вас знания химических основ из прошлых уроков. Обязательно прочитайте об элементном анализе, где подробно рассмотрены эмпирические формулы и анализ химических веществ.

В результате реакции горения метана CH 4 в кислороде O 2 образуются диоксид углерода CO 2 и вода H 2 O. Эта реакция может быть описана химическим уравнением :

  • CH 4 + O 2 → CO 2 + H 2 O (1)

Попробуем извлечь из химического уравнения больше сведений, чем просто указание продуктов и реагентов реакции. Химичекое уравнение (1) является НЕполным и потому не дает никаких сведений о том, сколько молекул O 2 расходуется в расчете на 1 молекулу CH 4 и сколько молекул CO 2 и H2 O получается в результате. Но если записать перед соответствующими молекулярными формулами численные коэффициенты, которые укажут сколько молекул каждого сорта принимает участие в реакции, то мы получим полное химическое уравнение реакции.

Для того, чтобы завершить составление химического уравнения (1), нужно помнить одно простое правило: в левой и правой частях уравнения должно присутствовать одинаковое число атомов каждого сорта, поскольку в ходе химической реакции не возникает новых атомов и не происходит уничтожение имевшихся. Данное правило основывается на законе сохранения массы, который мы рассмотрели в начале главы.

Нужно для того, чтобы из простого химического уравнения получить полное. Итак, перейдем к непосредственному уравниванию реакции (1): еще раз взгляните на химическое уравнение, в точности на атомы и молекулы в правой и левой части. Нетрудно заметить, что в реакции участвуют атомы трех сортов: углерод C, водород H и кислород O. Давайте подсчитаем и сравним количество атомов каждого сорта в правой и левой части химического уравнения.

Начнем с углерода. В левой части один атом С входит в состав молекулы CH 4 , а в правой части один атом С входит в состав CO 2 . Таким образом в левой и в правой части количество атомов углерода совпадает, поэтому его мы оставляем в покое. Но для наглядности поставим коэффициент 1 перед молекулами с углеродом, хоть это и не обязательно:

  • 1CH 4 + O 2 → 1CO 2 + H 2 O (2)

Затем переходим к подсчету атомов водорода H. В левой части присутствуют 4 атома H (в количественном смысле H 4 = 4H) в составе молекулы CH 4 , а в правой – всего 2 атома H в составе молекулы H 2 O, что в два раза меньше чем в левой части химического уравнения (2). Будем уравнивать! Для этого поставим коэффициент 2 перед молекулой H 2 O. Вот теперь у нас и в реагентах и в продуктах будет по 4 молекулы водорода H:

  • 1CH 4 + O 2 → 1CO 2 + 2H 2 O (3)

Обратите свое внимание, что коэффициент 2, который мы записали перед молекулой воды H 2 O для уравнивания водорода H, увеличивает в 2 раза все атомы, входящие в ее состав, т.е 2H 2 O означает 4H и 2O. Ладно, с этим вроде бы разобрались, осталось подсчитать и сравнить количество атомов кислорода O в химическом уравнении (3). Сразу бросается в глаза, что в левой части атомов O ровно в 2 раза меньше чем в правой. Теперь-то вы уже и сами умеете уравнивать химические уравнения, поэтому сразу запишу финальный результат:

  • 1CH 4 + 2O 2 → 1CO 2 + 2H 2 O или СH 4 + 2O 2 → CO 2 + 2H 2 O (4)

Как видите, уравнивание химических реакций не такая уж и мудреная штука, и важна здесь не химия, а математика. Уравнение (4) называется полным уравнением химической реакции, потому что в нем соблюдается закон сохранения массы, т.е. число атомов каждого сорта, вступающих в реакцию, точно совпадает с числом атомов данного сорта по завершении реакции. В каждой части этого полного химического уравнения содержится по 1 атому углерода, по 4 атома водорода и по 4 атома кислорода. Однако стоит понимать пару важных моментов: химическая реакция — это сложная последовательность отдельных промежуточных стадий, и потому нельзя к примеру истолковывать уравнение (4) в том смысле, что 1 молекула метана должна одновременно столкнуться с 2 молекулами кислорода. Процессы происходящие при образовании продуктов реакции гораздо сложнее. Второй момент: полное уравнение реакции ничего не говорит нам о ее молекулярном механизме, т.е о последовательности событий, которые происходят на молекулярном уровне при ее протекании.

Коэффициенты в уравнениях химических реакций

Еще один наглядный пример того, как правильно расставить коэффициенты в уравнениях химических реакций: Тринитротолуол (ТНТ) C 7 H 5 N 3 O 6 энергично соединяется с кислородом, образуя H 2 O, CO 2 и N 2 . Запишем уравнение реакции, которое будем уравнивать:

  • C 7 H 5 N 3 O 6 + O 2 → CO 2 + H 2 O + N 2 (5)

Проще составлять полное уравнение, исходя из двух молекул ТНТ, так как в левой части содержится нечетное число атомов водорода и азота, а в правой — четное:

  • 2C 7 H 5 N 3 O 6 + O 2 → CO 2 + H 2 O + N 2 (6)

Тогда ясно, что 14 атомов углерода, 10 атомов водорода и 6 атомов азота должны превратиться в 14 молекул диоксида углерода, 5 молекул воды и 3 молекулы азота:

  • 2C 7 H 5 N 3 O 6 + O 2 → 14CO 2 + 5H 2 O + 3N 2 (7)

Теперь в обеих частях содержится одинаковое число всех атомов, кроме кислорода. Из 33 атомов кислорода, имеющихся в правой части уравнения, 12 поставляются двумя исходными молекулами ТНТ, а остальные 21 должны быть поставлены 10,5 молекулами O 2 . Таким образом полное химическое уравнение будет иметь вид:

  • 2C 7 H 5 N 3 O 6 + 10,5O 2 → 14CO 2 + 5H 2 O + 3N 2 (8)

Можно умножить обе части на 2 и избавиться от нецелочисленного коэффициента 10,5:

  • 4C 7 H 5 N 3 O 6 + 21O 2 → 28CO 2 + 10H 2 O + 6N 2 (9)

Но этого можно и не делать, поскольку все коэффициенты уравнения не обязательно должны быть целочисленными. Правильнее даже составить уравнение, исходя из одной молекулы ТНТ:

  • C 7 H 5 N 3 O 6 + 5,25O 2 → 7CO 2 + 2,5H 2 O + 1,5N 2 (10)

Полное химическое уравнение (9) несет в себе много информации. Прежде всего оно указывает исходные вещества — реагенты , а также продукты реакции. Кроме того, оно показывает, что в ходе реакции индивидуально сохраняются все атомы каждого сорта. Если умножить обе части уравнения (9) на число Авогадро N A =6,022·10 23 , мы сможем утверждать, что 4 моля ТНТ реагируют с 21 молями O 2 с образованием 28 молей CO 2 , 10 молей H 2 O и 6 молей N 2 .

Есть еще одна фишка. При помощи таблицы Менделеева определяем молекулярные массы всех этих веществ:

  • C 7 H 5 N 3 O 6 = 227,13 г/моль
  • O2 = 31,999 г/моль
  • CO2 = 44,010 г/моль
  • H2 O = 18,015 г/моль
  • N2 = 28,013 г/моль

Теперь уравнение 9 укажет еще, что 4·227,13 г = 908,52 г ТНТ требуют для осуществления полной реакции 21·31,999 г = 671,98 г кислорода и в результате образуется 28·44,010 г = 1232,3 г CO 2 , 10·18,015 г = 180,15 г H 2 O и 6·28,013 г = 168,08 г N 2 . Проверим, выполняется ли в этой реакции закон сохранения массы:

Реагенты Продукты
908,52 г ТНТ 1232,3 г CO2
671,98 г CO2 180,15 г H2 O
168,08 г N2
Итого 1580,5 г 1580,5 г

Но необязательно в химической реакции должны участвовать индивидуальные молекулы. Например, реакция известняка CaCO3 и соляной кислоты HCl, с образованием водного раствора хлорида кальция CaCl2 и диоксида углерода CO2 :

  • CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O (11)

Химическое уравнение (11) описывает реакцию карбоната кальция CaCO 3 (известняка) и хлористоводородной кислоты HCl с образованием водного раствора хлорида кальция CaCl 2 и диоксида углерода CO 2 . Это уравнение полное, так как число атомов каждого сорта в его левой и правой частях одинаково.

Смысл этого уравнения на макроскопическом (молярном) уровне таков: 1 моль или 100,09 г CaCO 3 требует для осуществления полной реакции 2 моля или 72,92 г HCl, в результате чего получается по 1 молю CaCl 2 (110,99 г/моль), CO 2 (44,01 г/моль) и H 2 O (18,02 г/моль). По этим численным данным нетрудно убедиться, что в данной реакции выполняется закон сохранения массы.

Интерпретация уравнения (11) на микроскопическом (молекулярном) уровне не столь очевидна, поскольку карбонат кальция представляет собой соль, а не молекулярное соединение, а потому нельзя понимать химическое уравнение (11) в том смысле, что 1 молекула карбоната кальция CaCO 3 реагирует с 2 молекулами HCl. Тем более молекула HCl в растворе вообще диссоциирует (распадается) на ионы H + и Cl — . Таким образом более правильным описанием того, что происходит в этой реакции на молекулярном уровне, дает уравнение:

  • CaCO 3 (тв.) + 2H + (водн.) → Ca 2+ (водн.) + CO 2 (г.) + H 2 O(ж.) (12)

Здесь в скобках сокращенно указано физическое состояние каждого сорта частиц (тв. — твердое, водн. — гидратированный ион в водном растворе, г. — газ, ж. — жидкость).

Уравнение (12) показывает, что твердый CaCO 3 реагирует с двумя гидратированными ионами H + , образуя при этом положительный ион Ca 2+ , CO 2 и H 2 O. Уравнение (12) как и другие полные химические уравнения не дает представления о молекулярном механизме реакции и менее удобно для подсчета количества веществ, однако, оно дает лучшее описание происходящего на микроскопическом уровне.

Закрепите полученные знания о составлении химических уравнений, самостоятельно разобрав пример с решением:

Надеюсь из урока 13 «Составление химических уравнений » вы узнали для себя что-то новое. Если у вас возникли вопросы, пишите их в комментарии.

«Знание шрифтов – одно из самых элементарных требований, предъявляемых к сыщику!», - так наставлял когда-то великий Шерлок Холмс своего друга и летописца доктора Ватсона. Аналогично этому, можно смело сказать: «Знание того, как составляются химические формулы – одно из самых элементарных требований, предъявляемых к химику!» В самом деле, как можно рассуждать о превращениях веществ, не умея составлять их формулы ?

Вам понадобится

  • - таблица Менделеева.

Инструкция

Тут вам надо опираться на такое понятие, как « », то есть способность атома одного вещества присоединять к себе определенное количество атомов другого вещества. Валентность любого элемента можно узнать, заглянув в таблицу Менделеева и помня некоторые общие правила.

Валентность металла, находящегося в «главной» подгруппе, равна номеру группы. Например, щелочные металлы литий, натрий, калий и т.д. – одновалентные, щелочноземельные кальций, стронций, барий и т.д. – двухвалентные.

Неметаллы имеют две валентности – высшую (которая равна номеру группы) и низшую (которую определяют, вычитая из 8 номер группы). В соединениях с металлами неметаллы имеют низшую валентность!

Если два неметалла соединяются между собой, то низшую валентность проявляет тот неметалл, который находится в Таблице Менделеева правее и выше. Фтор является исключением из этих правил, и всегда проявляет валентность, равную 1.

Необходимо также помнить, что в соединениях, состоящих из двух элементов, общее число валентностей одного элемента всегда должно быть равно общему количеству валентностей другого элемента!

Запомнив эти весьма несложные положения, вы сможете легко составлять химические формулы . Например, какова будет формула фосфорного ангидрида, то есть оксида фосфора? Во-первых, сразу возьмите на заметку: и фосфор, и кислород – неметаллы. Во-вторых, смотрите в таблицу Менделеева. Фосфор располагается в пятой группе, кислород – в шестой. Следовательно, низшую валентность в этом соединении проявит кислород, и она будет равна 2 (8 – 6 = 2). Валентность фосфора, соответственно, будет равна 5.

Какие же коэффициенты надо подставить и к фосфору, и к кислороду, чтобы соблюсти правило: сумма валентностей одного элемента должна равняться сумме валентностей второго? Легко можно увидеть, что для цифр 2 и 5 наименьшее общее кратное - 10. Следовательно, искомая формула фосфорного ангидрида такова: Р2О5.

Ну, а какова будет формула азида лития, то есть, вещества, образованного неметаллом азотом и щелочным металлом литием? Литий имеет валентность, равную 1. Азот, располагаясь в 5 группе, может иметь высшую валентность, равную 5, и низшую, равную 3. А поскольку в соединениях с металлами неметаллы имеют низшую валентность, легко вывести формулу этого соединения: Li3N.


Внимание, только СЕГОДНЯ!

Все интересное

Периодическая система химических элементов – это уникальный справочный материал, который нужно правильно «читать», а затем воспользоваться полученной информацией. Помимо этого таблица Д.И. Менделеева считается разрешенным материалом на…

Валентность – один из основных терминов, употребляемых в теории химического строения. Это понятие определяет способность атома образовывать химические связи и количественно представляет собой число связей, в которых он участвует. Инструкция …

Химическая формула – это условное обозначение, написанное с помощью определенных символов и характеризующее состав любого вещества. С помощью химической формулы вы можете увидеть, атомы каких элементов и в каких количествах входят в состав той или…

Валентность – важнейшее понятие химии. Физический смысл этого понятия стал ясен благодаря развитию учения о химической связи. Валентность атома определяется числом ковалентных связей, которыми он соединен с другими атомами. Инструкция 1Главную…

Валентность - это способность атома вступать во взаимодействие с другими атомами, образуя с ними химические связи. В создание теории валентности внесли большой вклад многие ученые, прежде всего, немец Кекуле и наш соотечественник Бутлеров.…

Количество известных химических соединений исчисляется миллионами. По мере развития науки и производства их будет становиться все больше, и запомнить их все не в состоянии даже самый квалифицированный специалист. Но можно научиться самим составлять…

Фосфор – химический элемент, имеющий 15-й порядковый номер в Таблице Менделеева. Он расположен в ее V группе. Классический неметалл, открытый алхимиком Брандом в 1669-м году. Существует три основных модификации фосфора: красный (входящий в состав…

Химическая формула – это запись, сделанная с использованием общепринятых символов, которая характеризует состав молекулы какого-либо вещества. Например, формула всем известной серной кислоты – H2SO4. Легко можно увидеть, что каждая молекула серной…

Валентность - это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто. Инструкция …

Химия для каждого школьника начинается с таблицы Менделеева и фундаментальных законов. И уже только потом, уяснив для себя, что же изучает эта сложная наука, можно приступать к составлению химических формул. Для грамотной записи соединения нужно…

Оксиды – это сложные химические вещества, которые состоят из двух элементов. Одним из них является кислород. Оксиды в большинстве случаев бывают кислотными и основными. Как легко понять из названия, кислотные оксиды реагируют с основаниями, образуя…

Валентность химического элемента - это способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Нужно помнить, что некоторые атомы одного и того же химического элемента могут…

План – конспект урока:

«Использование электронных образовательных ресурсов в работе педагога».

Место работы: МКОУ «Хаилинская средняя школа».

Должность: учитель химии и биологии.

Предмет: химия.

Базовый учебник: Г.Е. Рудзитис, Ф.Г. Фельдман

Цель урока: научить учащихся составлять формулы химических соединений по валентности и степени окисления.

Задачи:

    обучающие: научить составлять формулы бинарных соединений.

    развивающие: вырабатывать умение логически рассуждать, грамотно излагать свои мысли, глубже осмыслить и понять ег.

воспитательные: развивать самостоятельность, сообразительность.

Тема урока: Составление химических формул.

Тип урока: Урок изучения и первичного закрепления новых знаний.

Техническое оборудование: компьютер, мультимедийный проектор

Структура и ход урока:

Этапы урока:

Организация начала урока.

Мотивация учебной деятельности.

Важность понимания изучения данной темы, заключается в ее биологическом смысле.

Вся Вселенная, в том числе и планета Земля и все царства (бактерии, грибы, простейшие, растения и животные) состоят из одних и тех же химических атомов, элементов. Атомы одинаковые и разные, соединяясь, образуют вещества неорганические и органические. Из веществ состоят все тела и предметы. Выразим через формулы – состав веществ.

Подготовка учащихся к усвоению, актуализация опорных знаний.

Учащиеся уже изучили и познакомились с такими понятиями как:

    Закон постоянства состава вещества. (1799 – 1806 гг. – Ж. Пруст)

Каждое химически чистое вещество независимо от места нахождения и способа получения имеет один и тот же постоянный состав.

Н а основе закона постоянства состава веществ можно вывести химические формулы.

2. Химическая формула – это условная запись состава вещества посредством химических знаков и индексов.

Индекс в химических формулах обозначает число атомов.

Al 2 индекс O 3 индекс Fe Cl 3 – индекс

    Валентность – это свойство атома химического элемента присоединять или замещать определенное число атомов другого химического элемента.

    Валентность водорода принята за единицу.

    Валентность кислорода равна двум.

    Численное значение валентности принято обозначать римскими цифрами, которые ставятся над знаками химических элементов.

    Свойство атомов данного элемента оттягивать на себя электроны от атомов других элементов в соединениях называют электротрицательностью.

    Степень окисления – условный заряд элемента.

Величину степени окисления определяет число электронов, смещенных от атомов менее электроотрицательного элемента к атому более электроотрицательного элемента.

Изучение нового материала.

Химические формулы это аналоги слов, как слова записываются с помощью букв, так и формулы записываются с помощью химических символов, знаков. Химические формулы отражают состав вещества.

Цель урока.

Задачи урока.

    Составление химических формул по валентности.

Чтобы составить химическую формулу, необходимо знать валентность элементов, образующих данное химическое соединение. При составлении химических формул необходимо соблюдать порядок действий:

1.Пишут рядом химические знаки элементов, которые входят в состав соединения:

K O Al Cl AlO

2. Над знаками химических элементов проставляют их валентность:

I II III I III II

K O Al Cl Al O

3. Определяют наименьшее общее кратное чисел, выражающих валентность обоих элементов:

2 3 6

I II III I III II

K O Al Cl Al O

4. Делением наименьшего общего кратного на валентность соответствующего элемента находят индексы

I II III I III II

K 2 O Al Cl 3 Al 2 O 3

5. В названии веществ, образованных элементами с переменной валентностью, пишут в скобках цифру, показывающую валентность данного элемента в этом соединении.

Например,

Cu O – оксид меди (II )

Cu 2 O – оксид меди (I )

Fe Cl 2 – хлорид железа (II )

Fe Cl 3 – хлорид железа(III )

6. Некоторые элементы в разных соединениях проявляют различную валентность.

(см. таблицу)

Валентность некоторых элементов в химических соединениях.

Химические элементы.

С постоянной валентностью

O Be Mg Ca Ba Zn

Al B

С переменной валентностью

I II

II III

Fe Co Ni

II IV

Sn Pb

III V

II III VI

II IV VI

    При составлении химических формул по степени окисления необходимо знать:

    степени окисления элементов, образующих данное химическое соединение;

    их элекроотрицательность, так как самый электроотрицательный элемент ставится последним;

    сумма отрицательных и положительных степеней окисления в правильно составленной формуле всегда равна нулю.

Первичная проверка усвоения знаний .

Правила составления химических формул .

Первичное закрепление знаний.

Формулы химических соединений составляются на основе понятия «степень окисления». Степень окисления (с.о .) – это условный заряд, атома, если бы он отдал или присоеденил соответствующее число электронов.

Металлы в соединениях имеют только положительную степень окисления, т.к. металлы отдают электроны. Неметаллы имеют как положительную, так и отрицательную степень окисления (неметаллы могут как присоеденять, так и отдавать электроны). Значение максимальной степени окисления определяется, как правило, по номеру группы, в которой находится элемент.

Для неметаллов характерны несколько степеней окисления, они определяются также по номеру группы, если номер группы четный, то все степени окисления выражаются четными числами, если номер группы нечетный, то – нечетными числми:

S - неметалл, VI группа, с.о. = +6, +4, +2, 0, -2.

Cl - неметалл, VII группа, с.о. = +7, +5, +3, +1, 0, -1.

Простые вещества определяются нулевой степенью окисления. Отрицательная степень окисления также определяется исходя из номера группы. Она равна количеству электронов, которых не хватает до получения устойчивой электронной конфигурации - 8 электронов.

Для элементов побочных подгрупп высшая степень окисления определяется, как правило, номером группы, низшая для большинства элементов равна +2. Данные зависимости степеней окисления от структуры ПСЭ определяются электронным строением атомов (см. главу 2).

Свойства классов неорганических соединений


продукт реакции

Рис. 3. Генетическая связь между классами

Данная схема (рис. 3) отражает свойства классов неорганических соединений – оксидов (основных, кислотных), кислот, оснований: во взаимодействие вступают противоположные по своей природе соединения. Продуктом взаимодействия является соль.

Оксиды – сложные вещества, состоящие из двух элементов, одним из которых является кислород.

Основные оксиды образуются от типичных металлов. К типичным (активным) металлам относят щелочные (Li – Fr) и щелочноземельные металлы (Ca – Ra).




Рис. 4.Основные оксиды

Оксиды переходных металлов

Менее активные металлы – переходные металлы (элементы побочных подгрупп) тоже могут образовывать основные, а также кислотные и амфотерные оксиды в зависимости от степени окисления элемента.


Кислотные оксиды образуются, как правило, от неметаллов.

Рис. 6. Кислотные оксиды

Основания - сложные соединения, состоящие из ионов металла и ионов гидроксила.

Таблица 1

Основания

Получение сильных оснований

1. Оксид с водой - CaO + H 2 O® Ca(OH) 2

2. Металл с водой - 2Na + H 2 O® 2NaOH + H 2

3. Электролиз растворов соли - NaCl, KCl (см. главу 12)