Применение масс спектрометрии. ОФС.2.1.0008.15 Масс-спектрометрия. Прямой перенос заряженной молекулы в газовую фазу

Масс-спектрометрия позволяет идентифицировать белки, определять какие изменения произошли с их структурой вследствие различных взаимодействий, при их воспроизводстве, определить пути метаболизма различных лекарственных средств и других соединений и идентифицировать метаболиты, разрабатывать новые целевые лекарственные средства. Масс-спектрометрия - единственный метод, решающий все эти и многие другие задачи аналитической биохимии.

Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков - бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надежна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соответствие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

Существование ядерной энергетики невозможно без масс-спектрометрии. С ее помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter Pylori и является самым надежным из всех методов диагностики.

ВЭЖХ/МС системы являются основным аналитическим инструментом при разработке новых лекарственных средств. Без этого метода не может обходиться и контроль качества производимых лекарств и выявления такого распространенного явления как их фальсификация.

Протеомика дала в руки медицины возможность сверранней диагностики самых страшных заболеваний человечества - раковых опухолей и карилиологических дисфункций. Определение специфических белков, называемых биомаркерами, позволяет проводить раннюю диагностику в онкологии и кардиологии.

Область применения масс-спектрометрии: биохимия, клиническая химия, общая химия и органическая химия, фармацевтика, косметика, парфюмерия, пищевая промышленность, химический синтез, нефтехимия и нефтепераработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология, криминалистика, допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия, геология, гидрология, петрография, минералогия, геохронология, археология, ядерная промышленность и энергетика, полупроводниковая промышленность, металлургия.

Масс-спектрометр
Mass-spectrometer

Масс-спектрометр – прибор для определения масс атомов (молекул) по характеру движения их ионов в электрическом и магнитном полях.
Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра. Конструктивно масс-спектрометры могут сильно отличаться друг от друга. В них могут использоваться как статичные поля, так и изменяющиеся во времени поля, магнитные и/или электрические.

Рассмотрим один из наиболее простых вариантов.
Масс-спектрометр состоит из следующих основных частей:
а ) ионного источника, где нейтральные атомы превращаются в ионы (например, под действием нагревания или СВЧ-поля) и ускоряются электрическим полем, б ) области постоянных электрических и магнитных полей, и в ) приёмника ионов, определяющего координаты точек, куда попадают ионы, пересекшие эти поля.
Из ионного источника 1 ускоренные ионы через щель 2 попадают в область 3 постоянного и однородного электрического E и магнитного B 1 полей. Направление электрического поля задаётся положением пластин конденсатора и показано стрелками. Магнитное поле направлено перпендикулярно плоскости рисунка. В области 3 электрическое E и магнитное B 1 поля отклоняют ионы в противоположные стороны и величины напряжённости электрического поля Е и индукции магнитного поля B 1 подобраны так, чтобы силы их действия на ионы (соответственно qЕ и qvB 1 , где q – заряд, а v – скорость иона) компенсировали друг друга, т.е. было qЕ = qvB 1 . При скорости иона v = Е/B 1 он движется не отклоняясь в области 3 и проходит через вторую щель 4, попадая в область 5 однородного и постоянного магнитного поля c индукцией B 2 . В этом поле ион движется по окружности 6, радиус R которой определяется из соотношения
Мv 2 /R = qvB 2 , где М – масса иона. Так как v = Е/B 1 , масса иона определяется из соотношения

M = qB 2 R/v = qB 1 B 2 R/E.

Таким образом, при известном заряде иона q его масса M определяется радиусом R круговой орбиты в области 5. Для расчётов удобно использовать соотношение в системе единиц, приведённой в квадратных скобках:

M[Тл] = 10 6 ZB 1 [Тл]B 2 [Тл]R[м]/E[В/м].

Если в качестве детектора ионов 7 использовать фотопластинку, то этот радиус с высокой точностью покажет чёрная точка в том месте проявленной фотопластинки, куда попадал пучок ионов. В современных масс-спектрометрах в качестве детекторов обычно используют электронные умножители или микроканальные пластинки. Масс-спектрометр позволяет определять массы с очень высокой относительной точностью ΔМ/М = 10 -8 - 10 -7 .
Анализ масс-спектрометром смеси атомов различной массы позволяет также определить их относительное содержание в этой смеси. В частности, может быть установлено содержание различных изотопов какого-либо химического элемента.

Масс-спектрометрия – это способ изучения веществ, вычислением массы и числа ионов при ионизации вещества.

Навигация:

Оборудование, которым производится масс-спектрометрия, является масс-спектрометр. Он анализирует образец и предоставляет данные в виде графиков (масс-спектров).

Таким путем можно исследовать любой материал, который поддается ионизации.

Широкое применение масс-спектрометрия приобрела в таких сферах, как:

  • медицина и фармацевтика;
  • генная инженерия и биохимия;
  • химическая индустрия;
  • пищевая индустрия;
  • косметические и парфюмерные разработки;
  • лабораторная диагностика для определения веществ в криминалистике, контроле на допинги, экологии;
  • изготовление полимерных и пластиковых материалов;
  • полупроводниковая индустрия;
  • ядерная энергетика;
  • металлургическое производство;
  • нефтеперерабатывающая и нефтехимическая индустрия;
  • биология, геология, гидрология, минералогия и другие отрасли.

Пути исследования масс-спектрометрией в разных сферах различаются в зависимости от того, какие данные необходимо получить в итоге.

Масс-спектрометрией можно получить следующие данные:

  • установить структуру соединения;
  • исследование вещества на компоненты;
  • установить возраст геологической породы по обследованию состава изотопов;
  • хромато-масс-спектральный анализ для экологической сферы;
  • исследовать ионизационные процессы, ионные реакции;
  • измерять потенциал и энергию молекул.

Преимуществом метода масс-спектрометрии является то, что для исследования хватает совсем маленькое количество вещества.

Недостаток же состоит в разрушении материала, которое исследуется, т.е. анализируются продукты превращения.

Примечание. Масс-спектрометрический метод по сути не относится к спектрометрическому методу, так как отсутствует взаимодействие образца с электромагнитным излучением. Но из-за графического вида зависимости силы ионного потока от отношения массы к заряду, который похож на спектр, этот метод и получил свое название.

Очень доступно и подробно масс-спектрометрия освещается в учебных пособиях, вроде Лебедев А.Т. «Масс-спектрометрия в органической химии».

Метод масс-спектрометрии

Метод масс-спектрометрии заключается в последовательном выполнении следующих операций:

  1. Ионизация вещества, а именно лишение молекул хотя бы одного иона. Масса его ниже массы молекулы во много раз, поэтому он никак не повлияет на результат исследования.
  2. Разгон заряженных частиц в вакуумной среде в электрическом поле с последующим перемещением их в магнитное поле.
  3. Анализ перемещения частиц в магнитном поле, а именно их скорость, искривление траектории движения. Больше заряженные частицы быстрее разгоняются и лучше реагируют на магнит. Частицы с большой массой не такие управляемые из-за инерции движения.

Примечание. Вакуум необходим для свободного перемещения заряженных частиц и предотвращая превращения их в назад в незаряженные.

Ионизация образцов может производится несколькими путями и зависит от требуемой цели.

Существуют такие методы ионизации в масс-спектрометрии:

  1. Электронный удар – приспособлен для изотопного и молекулярного анализа неорганических материалов.
  2. Химическая ионизация – для изучения органических материалов.
  3. Электроспрей.
  4. Лазерное излучение.
  5. Бомбардировка пучком ионов.

Последние три метода используются для исследования веществ с крупными молекулами.

Кроме того, способ ионизации разделяется еще на несколько видов по состоянию вещества перед исследованием, а именно газ, жидкость или твердое вещество.

Газовое состояние (фаза) образца проводится такими способами ионизации:

  • электронная (изотопная масс-спектрометрия);
  • химическая;
  • электронный захват;
  • ионизация в электрическом поле.

Жидкое состояние (фаза) образца проводится такими способами ионизации в масс-спектрометрии:

  • термоспрей;
  • на открытом воздухе;
  • электроспрей;
  • химическая на открытом воздухе;
  • фотоионизация.

Твердое состояние (фаза) образца проводится такими способами ионизации:

  • прямая лазерная десорбция;
  • матрично-активированная лазерная десорбция/ионизация (МАЛДИ масс-спектрометрия);
  • масс-спектрометрия вторичных ионов (ионная масс-спектрометрия);
  • бомбардировка быстрыми атомами;
  • десорбция в электрическом поле;
  • плазменная десорбция;
  • ионизация в индуктивно-связанной плазме (масс-спектрометрия с индуктивно-связанной плазмой);
  • термоионизация (поверхностная ионизация);
  • ионизация в тлеющем разряде (искровая ионизация);
  • ионизация в процессе лазерной абляции.

Последние четыре варианта являются достаточно жесткими, но без них невозможно получить ионы в пробах с очень прочными связями.

Масс-спектрометрический гелиевый течеискатель

Очень широко практикуется метод масс-спектрометрии в гелиевых течеискателях, например, ПТИ-10, ТИ1-50 и другие.

Изучаемые системы или емкости заполняются гелием и потом с помощью масс-спектрометрического метода разыскиваются места, где через щели просачивается гелий.

Чувствительность масс-спектрометрического метода позволяет находить даже очень незначительные течи инертного газа в очень маленьком количестве, поэтому гелиевый масс-спектрометрический течеискатель является одним из самых точных и используемых приборов в промышленности.

Метод хромато-масс-спектрометрии

Метод хромато-масс-спектрометрии – это тандемная масс-спектрометрия хроматографии и масс-спектрометрии, т.е. сочетание этих двух методов.

Хроматография занимается разбиением молекул на заряженные частицы, а масс-спектрометрия анализирует их.

Существует два вида хромато-масс-спектрометрии:

  • газовая;
  • жидкостная.

Определение методом хромато-масс-спектрометрией состава органических веществ, которые чаще всего многокомпонетные, является, пожалуй, единственным доступным методом. Самым лучшим считается совокупность газовой хроматографии и ионного детектора масс-спектрометра.

Именно поэтому хромато-масс-спектрометрия получила большое потребление в медицинской практике для диагностирования и анализа заболеваний и их возбудителей, в том числе определение микробиоценоза разных органов любого сосредоточения методом хромато-масс-спектрометрии или масс-спектрометрия микробных маркеров биологических материалов (крови, моче и прочем). Микробиоценоз методом хромато-масс-спектрометрии предоставляет возможность выявить множество микробов, которые невозможно определить другими методами, даже те, которые находятся в спящем состоянии в защитных капсулах. А, следовательно, люди получают возможность воспользоваться правильным и своевременным лечением, что невозможно переоценить.

Кроме этого, хромато-масс-спектрометрия обширно применяется в фармацевтике для создания новых лекарств, химической промышленности, экологической сфере для оценки проб окружающей среды, генной инженерии, техническом контроле разных областей промышленности, лабораторных обследованиях на присутствие в крови запрещенных препаратов и прочее.

Газовая хроматография

Газовая хроматография масс-спектрометрия предусматривает добавление инертного газа-носителя (зачастую это гелий), который является подвижным элементом. Исследуемое вещество является неподвижным элементом.

Газовая масс-спектрометрия позволяет анализировать газы, жидкости и твердые вещества, у которых молекулярная масса ниже 400. Еще исследуемые вещества должны обладать требуемыми летучими, инертными и термостабильными свойствами.

Схема газового хроматографа предложена на схеме ниже.

Спектрометрический анализ

Спектрометрический анализ протекает в масс-анализаторах и детекторах масс-спектрометров.

Масс-анализаторы бывают непрерывные и импульсные. Разнятся они тем, что поступление в них ионов проводиться постоянно (непрерывно) или порциями, соответственно.

К непрерывным анализаторам принадлежат магнитный и квадрупольный, к импульсным – ионная ловушка, времяпролетный масс-анализатор и анализатор ионно-циклотронного резонанса с Фурье-преобразованием.

Основная задача анализатора - это перераспределение ионов с разными параметрами движения.

После этого ионы попадают в детектор, который регистрирует разные спектры ионов.

Чаще всего в качестве детекторов используется диодный вторично-электронный умножитель или фотоумножитель. Первый регистрирует количественные показатели различных ионов пучками электронов, второй регистрирует мерцание от бомбардировки ионами люминофора.

Существуют также другие виды детекторов, это микроканальные множители, системы типа диодных матриц и коллекторы.

Что такое масс-спектрометр

Масс-спектрометром называется вакуумное оборудование, которое способно анализировать вещество по законам перемещения заряженных частиц в магнитном и электрическом поле.

В упрощенном виде описание масс-спектрометра можно представить так: основные компоненты прибора – это ионный источник, масс-анализатор и детектор.

Ионный источник превращает обычные молекулы пробного образца в заряженные частицы и помещает их в электрическое и магнитное поле для ускорения.

Масс-анализатор делит ионы на группы по скорости движения, а именно по времени перемещения на какое-то расстояние.

Детектор регистрирует данные по относительному количеству каждой группы.

Кроме основных компонентов масс-спектрометр оснащается еще вакуумными установками с насосом и вентилятором для выработки вакуума, манометром, системой для установки пробного образца, электронной схемой, индикаторами, стабилизатором и прочим.

В зависимости от ионизации вещества, масс-спектрометры бывают статическими и динамическими.

Также существуют масс-спектрометры с двумя масс-анализаторами, т.е. тандемные спектрометры. Они используются в основном при мягких способах ионизации.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества путём определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество (см.: ионизация). История масс-спектрометрии ведётся с основополагающих опытов Джона Томсона в начале XX века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества.

Масс-спектрометрия в широком смысле - это наука получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров.

Масс-спектрометр - это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, и необходимый для получения масс-спектра.

Масс-спектр, как и любой спектр, в узком смысле - это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле - это нечто большее, несущее специфическую информацию, и делающее процесс его интерпретации более сложным и увлекательным.

Ионы бывают однозарядные и многозарядные, причём как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды.

Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы, позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул (см.: изотопный анализ).

В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

1)непрерывные масс-анализаторы

2)импульсные масс-анализаторы

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений. Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Масс-спектрометр

Масс-спектрометр - прибор для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанный на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. Регистрация ионов в данном устройстве осуществляется электрическими методами.

Принцип работы.

Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря, в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра.

Этап 1: Ионизация

Образование положительно заряженного иона, путем выбивания одного или нескольких электронов из атома (масс-спектрометры всегда работают с положительными ионами).

Масс-спектрометрия - это метод измерения отношения массы за­ряженных частиц к их заряду (m/z).

Для проведения масс-спектрометрического анализа образец пере­водят в ионизированную форму. После этого тем или иным способом производится разделение ионов по отношению их массы к зарядам и ре­гистрация этих ионов, которые могут быть как положительными, так и отрицательными.

Масс-спектрометрический анализ дает важную информацию для оп­ределения молекулярной массы, молекулярной формулы или элементного состава и структуры молекул.

Масс-спектрометрию используют для определения относительной молекулярной массы М г соединения, которую выражают в атомных единицах массы (а.е.м.) или дальтонах, Да, (1 Да = 1 а.е.м.=1,660541 - 10 -27 кг, что равно 1/12 массы изотопа углерода с массовым числом 12). Масса основного изотопа углерода 12 С выражается целым числом и равна 12,000000 Да. Массы всех изотопов любых других элементов будут вы­ражаться нецелыми числами.

В масс-спектре пики или линии с определенным отношением m/z, соответствуют молекулярным фрагментам и также обозначаются целым числом, полученным при округлении точного значения m/z.

В масс-спектрометрии существует три различных понятия массы. Средняя молекулярная масса вычисляется на основании элементного состава и средних атомных масс. Средняя молекулярная масса важна при изучении больших молекул. Номинальная молекулярная масса вы­числяется с учетом элементного состава и номинальных атомных масс наиболее распространенных в природе изотопов. Точная молекулярная масса вычисляется из значений точных масс наиболее распространен­ных изотопов.

С помощью масс-спектрометрии возможны: анализ органических соединений, неорганический анализ, исследования по выяснению меха­низмов реакций в органической химии и анализ поверхности.

С помощью масс-спектрометрии как аналитического метода решают громадное число качественных и количественных задач. Качественные ис­следования заключаются в определении структуры неизвестного соедине­ния, в частности, природных веществ, метаболитов лекарственных препа­ратов и других ксенобиотиков, синтетических соединений. Для количест­венного анализа масс-спектрометрию используют при разработке арбит­ражных методов и методов сравнения. Масс-спектрометрия сегодня раз­вивается очень быстро, охватывая все более широкие области примене­ния. Объединение масс-спектрометрии с хроматографией значительно увеличило возможности метода и расширило круг изучаемых объектов.

5.12. Электрогравиметрия

В электрогравиметрическом анализе определяемое вещество количественно выделяют из раствора электролизом и по массе выделившегося металла или его оксида на электроде рассчитывают содержание определяемого элемента в пробе.

Электролизом называют химическое разложение вещества под действием электрического тока. На катоде происходит восстановление:

Cu 2+ + 2e → Cu 0

а на аноде – окисление:

2Cl - - 2e → Cl 2 (г) и 2OH - - 2e → 1\2O 2 + H 2 O

Под действием приложенного напряжения заряженные частицы (ионы) перемещаются к электродам. Однако их разряд, т. е. электролиз, начинается при достижении определенной величины напряжения, называемой напряжением разложения

где E а, E к – ЭДС гальванического элемента;

iR – омическое падение напряжения;

η – перенапряжение анода и катода при выделении продуктов электролиза.

Схема установки для проведения электролиза приведена на рис. 5.14.

Электролиз чаще всего проводят при постоянном токе. Для получения постоянного тока обычно используют выпрямитель переменного тока или батарею аккумуляторов 1. Скользящий контакт 2 позволяет регулировать подаваемое напряжение, которое измеряют вольтметром V. Сила тока контролируется амперметром А. При выделении металлов катод 5 обычно используют в виде платиновой сетки, анод 4 – в виде платиновой спирали или пластинки. При выделении оксидов знаки электродов меняются: платиновая сетка становится анодом, а спираль – катодом. Раствор перемешивается механической или магнитной мешалкой 3.

Рис. 5.14. Схема установки для проведения электролиза: 1 – источник постоянного тока; 2 – переменное сопротивление (реостат); 3 – магнитная мешалка;

4 – анод; 5 – катод

В электрогравиметрических методах анализа кроме потенциала, силы тока важно контролировать ряд экспериментальных условий.

5.13. Кулонометрия

В кулонометрических методах определяют количество электричества, которое расходуется в ходе электрохимической реакции. Различают прямую кулонометрию и кулонометрическое титрование.

В методах прямой кулонометрии анализируемое вещество непосредственно подвергается электрохимическому превращению в кулонометрической ячейке (процесс проводят при постоянном контролируемом потенциале) (Рис. 5.15.).

Рис. 5.15. Схема установки для прямой кулономeтрии при постоянном E:

1 - электролизер; 2 - источник постоянного токa с регулируемым напряжением: 3 - прибор для определения количества злектричества: 4 - рабочий электрод; 5 - вспомогательный электрод; 6 - электрод сравнения, относительно которого контролируют потенциал рабочего электрода: 7 - устройство, измеряющее разность потенциалов.

В методе кулонометрического титрования определяемое вещество реагирует с титрантом, который производится в кулонометрической ячейке посредством электролиза специально подобранного раствора.

Кулонометрическое титрование проводят при постоянном токе.

Кулонометрические методы основаны на законах Фарадея. Необходимым условием количественного определения является 100%-й выход по току. Выход по току определяется отношением количества вещества, выделившегося в процессе электролиза, к теоретическому количеству, вычисленному на основании закона Фарадея. Не 100%-й выход по току может быть обусловлен затратами тока на побочные процессы:

1) разложение воды на водород и кислород;

2) восстановление или окисление примесей, например, растворенного в воде кислорода;

3) реакция с участием продуктов электролиза;

4) реакция с участием материала электрода (окисление ртути и др).

При проведении кулонометрических определений нужно предусмотреть все условия, обеспечивающие 100%-й выход по току, контроль рН, выбор электродов, разделение катодного и анодного пространства.

5.14. Кондуктометрия

Кондуктометрический метод анализа основан на измерении удель­ной электропроводности анализируемого раствора.

Электропроводностью называют величину, обратную электриче­скому сопротивлению R. Единицей измерения электропроводности яв­ляется сименс (См) или Ом -1 . Растворы электролитов, являясь провод­никами II рода, подчиняются закону Ома. По аналогии с сопротивлени­ем проводников I рода сопротивление раствора прямо пропорционально расстоянию между электродами d и обратно пропорционально площади их поверхности A:

где р - удельное сопротивление, Ом · см.

При d =1 см иА =1 см 2 име­ем R = р, следовательно, удельное сопротивление равно сопротивлению 1 см 3 раствора.

Величину, обратную удельному сопротивлению, называют удель­ной электропроводностью:

Удельная электропроводность (См ∙ см -1) численно равна току (А), проходящему через слой раствора с поперечным сечением, равным еди­нице, под действием градиента потенциала 1 В на единицу длины.

Электропроводность разбавленных растворов электролитов зависит от числа ионов в растворе (т. е. от концентрации), числа элементарных зарядов, переносимых каждым ионом (т. е. от заряда иона), и от скоро­сти движения одинаково заряженных ионов к катоду или аноду под действием электрического поля (Рис. 5.16.). С учетом всех этих факторов электро­проводящие свойства ионов характеризуют эквивалентной ионной электропроводностью (подвижностью).

Рис. 5.16. Кондуктометр ОК 102/1: 1 – корпус прибора; 2 – измерительная

шкала; 3 – тумблер «Сеть»; 4 - переключатель пределов измерения «Range»; 5 – ручка калибровки потенциометра «Calibration»; 6 – кнопка калибровки «Calibration».

Различают прямую и косвенную кондуктометрию, или кондукто­метр ическое титрование.

Прямая кондуктометрия мало применяется в аналитической хи­мии. Причина этого в том, что электропроводность является величиной аддитивной и определяется присутствием всех ионов в растворе. Пря­мые кондуктометрические измерения используют для контроля качест­ва воды, применяемой в химической лаборатории, и современные уста­новки для перегонки или деминерализации воды снабжаются кондуктометрическими датчиками - кондуктометрами для измерения удельной электропроводности растворов. Детекторы по электропроводности при­меняются в ионной хроматографии.

К достоинствам метода кондуктометрического титрования относится возможность высокоточных измерений даже в очень разбавленных растворах.

Для кондуктометрического титрования пригодны кислотно-основные или осадительные реакции, сопровождающиеся заметным из­менением электропроводности вследствие образования малодиссоциирующих или малорастворимых соединений.

5.15. Титриметрия

Титриметрический анализ (титрование) - метод количественного/массового анализа, который часто используется в аналитической химии, основанный на измерении объёма раствора реактива точно известной концентрации, расходуемого для реакции с определяемым веществом (Рис. 5.17.).

Рис. 5.17. Настольный электрохимический прибор

OHAUS Starter 2100

Титрование - процесс определения титра исследуемого вещества. Титрование производят с помощью бюретки, заполненной титрантом до нулевой отметки. Титровать начиная от других отметок не рекомендуется, так как шкала бюретки может быть неравномерной. Заполнение бюреток рабочим раствором производят через воронку или с помощью специальных приспособлений, если бюретка полуавтоматическая. Конечную точку титрования (не следует путать с точкой эквивалентности) определяют индикаторами или физико-химическими методами (по электропроводности, светопропусканию, потенциалу индикаторного электрода и т. д.). По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа.

Методы титрования

Процесс титрования сопровождается изменением равновесных концентраций реагента, определяемого вещества и продуктов реакции. Это удобно изобразить графически в виде т. наз. кривой титрования в координатах концентрация определяемого.вещества (или пропорциональная ей величина)-объем (масса) титранта.

(1) Косвенное титрование, или титрование заместителя – титрование, которое применяют, когда нет подходящей реакции или индикатора для прямого титрования. В этом случае используют реакцию, в которой анализируемое вещество замещают эквивалентным количеством другого вещества и затем титруют рабочим раствором.

(2) Метод объемного (титрометрического) анализа - это метод количественного определения, основанный на измерении объема реагента, требуемого для проведения реакции с определяемым веществом.

(3) Обратное титрование – титрование, которое используют в тех случаях, когда прямое титрование невозможно или когда анализируемое вещество неустойчиво. При этом берут два рабочих раствора, один из которых добавляют в избытке, а вторым титруют избыток первого.

(4) Прямое титрование наиболее распространенный и удобный прием, когда к анализируемому раствору вещества непосредственно добавляют рабочий раствор известной концентрации.

(5) Титрование –процесс постепенного добавления раствора точно известной концентрации к исследуемому раствору.

(6) Точка эквивалентности – установление конечной точки титрования.

Объемные методы анализа . Титрование как метод количественного определения вещества: прямое, косвенное и обратное

Метод объемного (титрометрического) анализа (2) это метод количественного определения, основанный на измерении объема реагента, требуемого для проведения реакции с определяемым веществом.

Объемные методы анализа основаны на протекании реакций нейтрализации, осаждения, ионного обмена, комплексообразования, окисления-восстановления и др. Они должны удовлетворять следующим условиям:

Строгое соблюдение стехиометрических соотношений между веществами реакций;

Быстрое и количественное протекание реакций;

Точное и строгое фиксирование точки эквивалентности;

Посторонние вещества в анализируемой пробе не должны вступать в реакцию с добавляемым реагентом, что может помешать титрованию.

Титрованием (5)называют процесс постепенного добавления раствора точно известной концентрации к исследуемому раствору.

Одной из основных стадий этого процесса, во многом определяющей точность объемного метода, является установление конечной точки титрования, называемой точкой эквивалентности (6). Точку эквивалентности определяют визуально по изменению цвета раствора, индикатора, появлению помутнения либо инструментальными методами кондуктометрическое, потенциометрическое титрование.

Для титрования достаточно 1-3 капель раствора индикатора массовой долей 0,1-0,5 % на 10-100 см 3 анализируемого раствора.

Титрометрическое определение осуществляют прямым, косвенным и обратным титрованием.

Прямое титрование (4)наиболее распространенный и удобный прием, когда к анализируемому раствору вещества непосредственно добавляют рабочий раствор известной концентрации.

Косвенное титрование, или титрование заместителя (1), применяют, когда нет подходящей реакции или индикатора для прямого титрования. В этом случае используют реакцию, в которой анализируемое вещество замещают эквивалентным количеством другого вещества и затем титруют рабочим раствором.

Обратное титрование (3) используют в тех случаях, когда прямое титрование невозможно или когда анализируемое вещество неустойчиво. При этом берут два рабочих раствора, один из которых добавляют в избытке, а вторым титруют избыток первого.

Расчет массовой доли определяемого вещества Х (в %) через массовую концентрацию рабочего раствора ведут по формуле

Х=100 VСМ /(1000т), (5.5)

где V - объем рабочего раствора, пошедшего на титрование, см 3 ;

С -молярная концентрация рабочего раствора, моль/дм 3 ;

М - молекулярная эквивалентная масса определяемого вещества, г/моль;

m - масса навески анализируемого вещества, г.

6. ВИДЫ ДЕФЕКТОВ МЕТАЛЛА

6.1. Классификация дефектов

Дефектом называют каждое отдельное несоответствие продукции требованиям, установленным нормативной документацией (ГОСТ, ОСТ, ТУ и т.д.). К несоответствиям относятся нарушение сплошности материалов и деталей, неоднородность состава материала: наличие включений, изменение химического состава, наличие других фаз материала, отличных от основной фазы, и др.

Дефектами являются также любые отклонения параметров материалов, деталей и изделий от заданных, таких, как размеры, качество обработки поверхности, влаго- и теплостойкость и ряд других физических величин.

Дефекты подразделяются на явные (те, что выявляются глазами) и скрытые (внутренние, подповерхностные, неразличимые глазом).

В зависимости от возможного влияния дефекта на служебные свойства детали дефекты могут быть:

Критическими (дефекты, при наличии которых использование продукции по назначению невозможно или исключается по соображениям безопасности и надёжности);

Значительными (дефекты, существенно влияющие на использование продукции и/или на её долговечность, но не являющиеся критическими);

Малозначительными (не оказывают влияния на работоспособность продукции).

По происхождению дефекты изделий подразделяют на производственно-технологические (металлургические, возникающие при отливке и прокатке, технологические, возникающие при изготовлении, сварке, резке, пайке, клепке, склеивании, механической, термической или химической обработке и т.п.); эксплуатационные (возникающие после некоторой наработки изделия в результате усталости материала, коррозии металла, изнашивания трущихся частей, а также неправильной эксплуатации и технического обслуживания) и конструктивные дефекты, являющиеся следствием несовершенства конструкции из-за ошибок конструктора.

C целью выбора оптимальных методов и параметров контроля производится классификация дефектов по различным признакам: по размерам дефектов, по их количеству и форме, по месту расположения дефектов в контролируемом объекте и т.д.

Размеры дефектов a могут изменяться от долей миллиметров до сколь угодно большой величины. Практически размеры дефектов лежат в пределах 0,01 мм ≤ a ≤ 1 см.

В ультразвуковой дефектоскопии, например, величина а влияет на выбор рабочей частоты.

При количественной классификации дефектов различают три случая (рис. 6.1): а – одиночные дефекты, б – групповые (множественные) дефекты, в – сплошные дефекты (обычно в виде газовых пузырей и шлаковых включений в металлах).

Рис. 6.1. Количественная классификация дефектов: а – одиночные;

б – групповые; в – сплошные

При классификации дефектов по форме различают три основных случая (рис. 6.2): а – дефекты правильной формы, овальные, близкие к цилиндрической или сферической форме, без острых краёв; б – дефекты чечевицеобразной формы, с острыми краями; в – дефекты произвольной, неопределённой формы, с острыми краями – трещины, разрывы, посторонние включения.

Форма дефекта определяет его опасность с точки зрения разрушения конструкции. Дефекты правильной формы, без острых краёв, наименее опасны, т.к. вокруг них не происходит концентрации напряжений. Дефекты с острыми краями, как на рис. 6.2, б и в, являются концентраторами напряжений. Эти дефекты увеличиваются в процессе эксплуатации изделия по линиям концентрации механических напряжений, что, в свою очередь, приводит к разрушению изделия.

Рис. 6.2. Классификация дефектов по форме: а – правильная форма;

б – чечевицеобразная форма с острыми краями; в – произвольная,

неопределённая форма с острыми краями

При классификации дефектов по положению различают четыре случая (рис. 6.3): а – поверхностные дефекты, расположенные на поверхности материала, полуфабриката или изделия, – это трещины, вмятины, посторонние включения; б – подповерхностные дефекты – это дефекты, расположенные под поверхностью контролируемого изделия, но вблизи самой поверхности; в – объёмные дефекты – это дефекты, расположенные внутри изделия.

Наличие фосфовидных и нитридных включений и прослоек может привести к образованию дефектов четвертого вида – сквозных.

По форме поперечного сечения сквозные дефекты бывают круглые (поры, свищи, шлаковые включения) и щелевидные (трещины, непровары, дефекты структуры, несплошности в местах расположения оксидных и других включений и прослоек).

По величине эффективного диаметра (для дефектов округлого сечения) или ширине раскрытия (для щелей, трещин) сквозные дефекты подразделяются на обыкновенные (> 0,5 мм), макрокапиллярные (0,5…2·10 -4 мм) и микрокапиллярные (< 2·10-4 мм).

Рис. 6.3. Классификация дефектов по положению в контролируемом

объекте: а – поверхностные; б – подповерхностные; в – объёмные

По характеру внутренней поверхности сквозные дефекты подразделяются на гладкие и шероховатые. Относительно гладкой является внутренняя поверхность шлаковых каналов. Внутренняя поверхность трещин, непроваров и вторичных поровых каналов, как правило, шероховатая.

Положение дефекта влияет как на выбор метода контроля, так и на его параметры. Например, при ультразвуковом контроле положение дефекта влияет на выбор типа волн: поверхностные дефекты лучше всего определяются рэлеевскими волнами, подповерхностные – головными волнами, а объёмные – объёмными (продольными) волнами.

Опасность влияния дефектов на работоспособность зависит от их вида, типа и количества. Классификация возможных дефектов в изделии позволяет правильно выбрать метод и средства контроля.

6.2. Производственно-технические дефекты

Дефекты в металлах образуются главным образом при плавлении, при обработке металла давлением (ковка, штамповка и прокат) и при шлифовании.

По ГОСТ 19200-80 дефекты отливок из чугуна и стали подразделяют на пять основных групп. Необходимо отметить, что принятая термино­логия широко используется также для отливок из сплавов на основе алюминия, магния, титана и других и поэтому может рассматриваться как универсальная.

6.2.1. Литейные дефекты

Несоответствие по геометрии.

Эта группа объединяет 14 видов де­фектов, обусловленных нарушением формы, неточностью размеров и массы отливки.

1. Недолил - дефект в виде неполного образования отливки вследствие незаполнения полости формы металлом (рис. 6.4. а). Одной из основных причин недолива является недостаточное количество жидкого металла.

2. Незалив - несоответствие конфигурации отливки чертежу вследст­вие износа модельной оснастки или дефектов формы (рис. 6.4. б). При­чиной незалива может быть также нарушение технологических режимов заливки.

3. Неслитина - сквозная щель или отверстие в стенке отливки, образовавшееся вследствие неслияния встречных потоков металла (рис. 6.4. в). Неслитина характерна для сплавов с широким интервалом кристаллизации и наблюдается обычно в тонких стенках отливок. Эти дефекты легко обнаруживаются при визуальном осмотре отливок.

4. Обжим - это местное нарушение конфигурации отливки вследствие деформации формы при ее сборке или заливке (рис. 6.4. г). Обжим обычно образуется вблизи плоскости разъема в виде прилива или утолщения произвольной формы.

5. Подутость представляет собой местное утолщение отливки, возник­шее вследствие расширения недостаточно уплотненной формы заливае­мым металлом (рис. 6.4. д).

6-8. Перекос и стержневой перекос - дефекты в виде смещения одной части отливки относительно осей или поверхностей другой части по разъему формы, модели вследствие их неточной установки (рис. 6.4. е) или в виде смещения отверстия, полости или части отливки, выполня­емых с помощью стержня, вследствие его перекоса (рис. 6.4. ж). Эти дефекты вызваны неточной фиксацией опок или перекосом стержня при его установке. В последнем случае возникает также разностенность - увеличение или уменьшение толщины стенок отливки (рис. 6.4. з). Раз­ностенность выявляется визуально или с помощью измерительных средств.

9. Стержневой залив - дефект в виде залитого металлом отверстия или полости в отливке, возникающий из-за непроставленного в литей­ной форме стержня или его обрушения (рис. 6.4. и).

10. Коробление - искажение конфигурации отливки под влиянием напря­жений, возникающих при охлаждении отливки или вследствие деформа­ции модельной оснастки. Коробление может проявляться в различных формах, наиболее характерным является появление вогнутости или вы­пуклости на плоских поверхностях отливок (рис. 6.4. к). Дефект выяв­ляется с помощью измерительных средств. Стрела прогиба 6 может служить мерой коробления.

11. Вылом и зарез - дефекты в виде нарушений конфигурации отливки при выбивке стержней, обрубке литников (рис. 6.4. л), зачистке отли­вок или их транспортировании.

12. Прорыв и уход металла - дефекты, вызванные вытеканием металл.* из формы вследствие ее недостаточной прочности или слабого крепле­ния ее частей. При этом либо происходит неполное заполнение полос­ти формы с одновременным образованием приливов произвольной формы, либо возникает дефект в виде пустоты в теле отливки, ограниченной тонкой коркой затвердевшего металла (рис. 6.4. м).

Рис. 6.4. Дефекты отливок - несоответствие по геометрии (стрелки указывают на расположение дефекта)