Видеоурок «Практические приложения подобия треугольников. Практическое приложение подобия треугольников


Повторение теоретического материала Что могут обозначать на схеме два верхних треугольника? Что обозначают стрелки, проведенные от этих треугольников? Сформулируйте определение подобия и три признака подобия А о чем вам говорят три нижних треугольника? Что за обозначения на них?








Тест. Если высказывание истинно – отвечаем «Да», если ложно - Нет 1.Два треугольника подобны, если их углы соответственно равны и сходственные стороны пропорциональны. 2.Два равносторонних треугольника всегда подобны. 3.Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. 4.Стороны одного треугольника имеют длины 3, 4, 6 см, стороны другого треугольника равны 9, 14, 18 см. Подобны ли эти треугольники? 5.Периметры подобных треугольников относятся как квадраты сходственных сторон. 6.Если два угла одного треугольника равны 60 и 50, а два угла другого треугольника равны 50 и 80, то такие треугольники подобны. 7.Два прямоугольных треугольника подобны, если имеют по равному острому углу. 8.Два равнобедренных треугольника подобны, если их боковые стороны пропорциональны. 9.Если отрезки гипотенузы, на которые она делится высотой, проведенной из вершины прямого угла, равны 2 и 8 см, то эта высота равна 4 см. 10.Если медиана треугольника равна 9 см, то расстояние от вершины треугольника до точки пересечения медиан равно 6 см.





    2.

    Теорема о средней линии.

    Валенок папин и ваш;….

    (продолжите).

    В жизни мы говорим похожие предметы, а в геометрии - подобные. Значит, нашу теорию можно применить к этим предметам. Давайте рассмотрим теорию подобия треугольников в окружающем нас мире.

    Сформулируем тему урока.

    Работа в парах:

    К

    А Верно ли, что: ?ABC ∞ ?A1B1C1, если ∠A = 46° ∠B = 64° ∠A1 = 46° ∠C1 = 70°

    Л Верно ли, что: ?ABC ∞ ?A1B1C1, если AB=13м A1B1=58м P?ABC =25м, то P?A1B1C1 =100м

    Ь Верно ли, что: ?ABC ∞ ?A1B1C1, если AB=15м A1B1=45м S?A1B1C1 =27 м2, то S?ABC =100м2

    К

    Л

    Ф

    А Верно ли,что если, то

    Проверка: Какое слово у вас получилось? - «Альфа».

    * Маленькая справка:

  • В нашей солнечной системе 1 звезда - это солнце.
  • Звёзды - в созвездии, самая яркая звезда в созвездии называется «Альфа».
  • Звёзды - недосягаемые до нас объекты, но их изучают, находят расстояние до них.

А как это сделать?

Определение расстояния до недоступной точки. Предположим, что нам нужно найти расстояние от пункта А до недоступного пункта B. Для этого на местности выбираем точку C, провешиваем отрезок AC и измеряем его. Затем с помощью астролябии измеряем углы ∠A и ∠С. На листе бумаги строим какой-нибудь треугольник?A1B1C1 , у которого ∠A1=∠A, ∠C1=∠C, и измеряем длины сторон A1B1 и A1C1 этого треугольника.

Так как?ABC ∞ ?A1B1C1 , то = , откуда. По известным расстояниям AC, A1C1 и A1B1 находим расстояние AB.

Для упрощения вычислений удобно построить треугольник?A1B1C1 так, чтобы A1C1: AC = 1:1000. Например, если AC = 130м, то расстояние A1C1 возьмем равным 130мм. В этом случае = 1000 , поэтому, измерив расстояние A1B1 в миллиметрах, мы сразу получаем расстояние AB в метрах.

Пример. Пусть AC = 130м, ∠A = 73° и ∠С = 58°. На бумаге строим треугольник?A1B1C1 так, чтобы ∠A1 = 73° и ∠С1 = 58°, A1C1 = 130мм, и измеряем отрезок A1B1 . Он равен 153мм, поэтому искомое расстояние равно 153м.

4.

Жрец надменно продолжал:

CAB ∞ ?BDE (по 2-ум углам)

  • C = ∠B (по условию)
  • B = ∠E = 90°

Ответ: 146 м.

AB=2,1 м AE=6,3 м CB=1,7 м

  1. Треугольники подобны по 2-ум углам.

ABC ∞ ?AED (по 2-ум углам)

  • A - общий
  • B = ∠E = 90°

Ответ: 5,1 м.

Па пример:

Ох! Устал

Еле еле успевая за учителем

Просмотр содержимого документа
«Конспект урока по геометрии по теме «Практические приложения подобия треугольников». »

Муниципальное образовательное учреждение

«Морская кадетская школа им. адмирала Котова П. Г.»

Урок по геометрии (8 кл.)

Тема: «Практические приложения подобия треугольников».

Скирмант Наталья Рудольфовна

учитель математики высшей

Рабочий адрес:

164520, Архангельская обл.,

г. Северодвинск, ул. Комсомольская, д.7,

рабочий телефон 55-20-86

Северодвинск

Цели и задачи урока:

    показать применение подобия треугольников при проведении измерительных работ на местности;

    показать взаимосвязь теории с практикой;

    познакомить учащихся с различными способами определения высоты предмета и расстояния до недоступного объекта;

    формировать умения применять полученные знания при решении разнообразных задач данного вида.

Развивающие

    повышать интерес учащихся к изучению геометрии;

    активизировать познавательную деятельность учащихся;

    формировать качества мышления, характерные для математической деятельности и необходимые для продуктивной жизни в обществе.

Воспитательные

    мотивировать интерес учащихся к предмету посредством включения их в решение практических задач.

Ход урока:

1.Проверка домашнего задания.

2.Тест «Верно ли ….» (работа в парах) - повторение теории.

3.Задача №1.Определение расстояния до недоступной точки (оформление в тетрадях конспекта вместе с учителем).

4.Задача №2.Определение высоты предмета:

а). по длине его тени (разобрать по готовому решению в учебнике, оформить в тетрадях самостоятельно 1 вариант).

б). по шесту (разобрать по готовому решению в учебнике, оформить в тетрадях самостоятельно 2 вариант).

в). с помощью зеркала (предложить разобрать задачу №581).

5.Итоги урока, домашнее задание №581,583.

1. Проверка домашнего задания. Объяснение готового решения №550(1).

Дано: рисунок.

    Треугольники подобны по 2-ум углам.

∆BAD ∞ ∆KCB (по 2-ум углам)

∠B = ∠K (по условию)

∠A = ∠C = 90°

2. Учитель: «Ребята, мы с вами изучили всю теорию подобия треугольников».

Рассмотрели применение подобия при доказательстве теорем.

Какие теоремы нами были доказаны?

Теорема о средней линии.

Свойство медиан треугольника.

В повседневной жизни нас окружают предметы одинаковой формы.

Пример: - мяч теннисный и футбольный;

Валенок папин и ваш;….

(продолжите).

В жизни мы говорим похожие предметы, а в геометрии – подобные. Значит, нашу теорию можно применить к этим предметам. Давайте рассмотрим теорию подобия треугольников в окружающем нас мире.

Сформулируем тему урока.

Ученики: «Практические приложения подобия треугольников».

Учитель: «Для того, чтобы применять теорию мы её должны хорошо знать. Повторим:

Работа в парах:

Верно ли данное высказывание. Если верно, букву перед высказыванием оставить, в противном случае зачеркнуть.

Тест «Верно ли ….» (работа в парах) - повторение теории.

К Верно ли, что: в подобных треугольниках сходственные стороны равны.

А Верно ли, что: ∆ABC ∞ ∆A 1 B 1 C 1 , если ∠A = 46° ∠B = 64° ∠A1 = 46° ∠C1 = 70°

Л Верно ли, что: ∆ABC ∞ ∆A 1 B 1 C 1 , если AB=13м A1B1=58м P ∆ ABC =25м, то P ∆ A 1 B 1 C 1 =100м

Ь Верно ли, что: ∆ABC ∞ ∆A1B1C1, если AB=15м A1B1=45м S ∆ A 1 B 1 C 1 =27 м 2 , то S ∆ ABC =100м 2

К Верно ли, что: в подобных треугольниках соответственные углы пропорциональны

Л Верно ли, (краткая формулировка признака подобия треугольников) «Треугольники подобны по трем углам»

Ф Верно ли, (краткая формулировка признака подобия треугольников) «Треугольники подобны по двум пропорциональным сторонам и углу между ними»

А Верно ли,что если, то

Проверка: Какое слово у вас получилось? – «Альфа».

* Маленькая справка:

  • В нашей солнечной системе 1 звезда – это солнце.

    Все остальные звёзды находятся за пределами нашей Солнечной системы.

    Звёзды – в созвездии, самая яркая звезда в созвездии называется «Альфа».

    Звёзды – недосягаемые до нас объекты, но их изучают, находят расстояние до них.

А как это сделать?

3.Задача №1.Определение расстояния до недоступной точки (оформление в тетрадях конспекта вместе с учителем).

Определение расстояния до недоступной точки. Предположим, что нам нужно найти расстояние от пункта А до недоступного пункта B. Для этого на местности выбираем точку C, провешиваем отрезок AC и измеряем его. Затем с помощью астролябии измеряем углы ∠A и ∠С. На листе бумаги строим какой-нибудь треугольник ∆A 1 B 1 C 1 , у которого ∠A 1 =∠A, ∠C 1 =∠C, и измеряем длины сторон A 1 B 1 и A 1 C 1 этого треугольника.

Так как ∆ABC ∞ ∆A 1 B 1 C 1 , то = , откуда. По известным расстояниям AC, A 1 C 1 и A 1 B 1 находим расстояние AB.

Для упрощения вычислений удобно построить треугольник ∆A 1 B 1 C 1 так, чтобы A 1 C 1: AC = 1:1000. Например, если AC = 130м, то расстояние A 1 C 1 возьмем равным 130мм. В этом случае = 1000 , поэтому, измерив расстояние A 1 B 1 в миллиметрах, мы сразу получаем расстояние AB в метрах.

Пример. Пусть AC = 130м, ∠A = 73° и ∠С = 58°. На бумаге строим треугольник ∆A 1 B 1 C 1 так, чтобы ∠A 1 = 73° и ∠С 1 = 58°, A 1 C 1 = 130мм, и измеряем отрезок A 1 B 1 . Он равен 153мм, поэтому искомое расстояние равно 153м.

4. Учитель: Вернёмся к делам земным. Греческие ученые решили множество практических задач, которые до них не умели решать. Например, за шесть веков до нашей эры греческий мудрец Фалес Милетский научил египтян определять высоту пирамиды по длине ее тени.

Как это было, рассказывается в книге Я.И. Перельмана «Занимательная геометрия». Фалес,- говорит предание,- избрал день и час, когда длина собственной его тени равнялась его росту; в этот момент высота пирамиды должна также равняться длине отбрасываемой ею тени. Вот, пожалуй, единственный случай, когда человек извлёк пользу из своей тени. Послушаем притчу. (рассказывает один из учащихся).

"Усталый северный чужеземец пришел в страну Великого Хапи. Солнце уже садилось, когда он подошел к великолепному дворцу фараона и что-то сказал слугам. Те мгновенно распахнули перед ним двери и провели его в приемную залу. И вот он стоит в запыленном походном плаще, а перед ним на золоченом троне сидит фараон. Рядом стоят высокомерные жрецы, хранители вечных тайн природы.

Кто ты? - спросил верховный жрец.

Зовут меня Фалес. Родом я из Милета.

Жрец надменно продолжал:

Так это ты похвалялся, что сможешь измерить высоту пирамиды, не взбираясь на нее? - жрецы согнулись от хохота.

Будет хорошо, - насмешливо продолжал жрец, - если ты ошибешься не более, чем на сто локтей.

Я могу измерить высоту пирамиды и ошибусь не более чем на пол-локтя. Я сделаю это завтра.

Лица жрецов потемнели. Какая наглость! Этот чужестранец утверждает, что может вычислить то, чего не могут они - жрецы Великого Египта.

Хорошо, сказал фараон. - Около дворца стоит пирамида, мы знаем ее высоту. Завтра проверим твое искусство".

На следующий день Фалес нашёл длинную палку, воткнул её в землю чуть поодаль пирамиды. Дождался определённого момента. Он измерил тень от палки и тень от пирамиды. Сравнивая соотношения высот реальных предметов с длинами их теней, Фалес нашел высоту пирамиды.

Задача №2.Определение высоты предмета:

а). по длине его тени (разобрать по готовому решению в учебнике, оформить в тетрадях самостоятельно 1 вариант).

CB=8,4 м BE=1022 м AB=1,2 м ∠C = ∠B

    Треугольники подобны по 2-ум углам.

∆CAB ∞ ∆BDE (по 2-ум углам)

∠C = ∠B (по условию)

∠B = ∠E = 90°

Ответ: 146 м.

б). по шесту (разобрать по готовому решению в учебнике, оформить в тетрадях самостоятельно 2 вариант).

AB=2,1 м AE=6,3 м CB=1,7 м

    Треугольники подобны по 2-ум углам.

∆ABC ∞ ∆AED (по 2-ум углам)

∠A - общий

∠B = ∠E = 90°

Ответ: 5,1 м.

в). с помощью зеркала (предложить разобрать задачу №581 (Д/з)).

Для определения высоты дерева можно использовать зеркало так, как показано на рисунке. Луч света FD , отражаясь от зеркала в точке D, попадает в глаз человека (точку B). Определите высоту дерева, если AC=165 см, BC=12 см, AD=120 см, DE=4,8 м, ∠1 = ∠2.

5. Учитель: Подведём итоги урока:

Сегодня на уроке мы познакомились с различными способами измерения высоты предмета; расстояние до недоступной точки; применяли теорию подобия.

Сформулируйте предложением, словосочетанием свое отношение к уроку, начав его с буквы, входящей в слово «подобие»

Па пример:

Ох! Устал

Еле еле успевая за учителем

Презентация «Практические приложения подобия треугольников» поможет учителям более понятно и доступно объяснить восьмиклассникам один из важных уроков из курса геометрии. Материал не такой уж и простой, как может показаться на первый взгляд. Необходимо уделить ей достаточно внимания, чтобы школьники хорошо усвоили эту тему. В дальнейшем, тригонометрические задачи будут появляться на практике в домашних заданиях и контрольных работах. Чтобы у учеников восьмого класса успеваемость была на высоком уровне, необходимо, чтобы они не пропускали ни один урок, ведь темы, как в геометрии, так и в алгебре являются взаимосвязанными.

Презентация имеет понятную структуру. На слайдах элементы высвечиваются последовательно. Текст не является сложным, он написан с учетом того, чтобы школьники могли максимально хорошо понять. Нет отвлекающих ярких цветов, узоров на фоне и прочее.

слайды 1-2 (Тема презентации "Практические приложения подобия треугольников", пример)

На первом слайде мультимедийного файла предлагается выполнить задачу на построение. Необходимо получить треугольник, имея при этом два известных угла и биссектрису при вершине третьего угла. Как же это необходимо выполнить?

Ниже высвечивается три элемента. Первый элемент - это отрезок, который в результате будет являться биссектрисой полученного треугольника. Следующие два элемента - это данные углы. Мы видим, что у них разная мера. Это говорит о том, что получим неравнобедренный треугольник. Остается построить требуемую фигуру.

В результате построения получили треугольник, у которого при основании имеются два заранее заданных угла. Однако если провести параллельно основанию отрезок, проходящий через нижнюю вершину биссектрисы, то получим искомую фигуру. К тому же, можно увидеть, что углы при основаниях у первого и у второго треугольника равны, а вершина у них одна. Это говорит об их равенстве.

слайды 3-4 (примеры)

На следующем слайде имеем два подобных треугольника. При этом, если внимательно рассмотреть их, то можно выяснить, что они прямоугольные. На данном слайде будет говориться о нахождении высоты. Так как треугольники являются подобными по первому признаку, то отношение их высот, будет равен отношению их катетов, к которым опущены высоты. Из пропорции можно выразить искомую высоту.

Чтобы было понятнее, ниже приводится пример с численными значениями. Если восьмиклассники не смогут решить их самостоятельно, то можно продемонстрировать им решение из этого же слайда. Аналогичным же образом можно найти и другие стороны, использую знания о подобных треугольниках.

слайд 5 (пример)

Для начала необходимо исследовать фигуры. Как видно, они являются подобными. Ведь они имеют два равных угла, что говорит о том, что выполняется первый признак подобия треугольников.
Исходя из подобия треугольников, можно написать пропорциональное соотношение соответствующих сторон. Из получившегося равенства можно выразить искомую сторону. Для лучшего понимания дается пример с численными значениями. Основание маленького треугольника в тысячу раз меньше основания большого треугольника. Также известны длины этих оснований.

Численное решение приводится на следующем слайде. Здесь же даны меры углов. Выразим из равенства, которое получили на прошлом слайде искомую сторону. Далее, подставим имеющиеся данные. Таким образом, получим длину искомой стороны. Другими словами, получили расстояние до недопустимой точки.

Итак, благодаря данному мультимедийному файлу школьники ознакомятся с построением подобных треугольников, также научаться находить высоту некоторого треугольника, зная данные о сторонах подобного ему треугольника. Очень важно, чтобы ученики восьмого класса научились составлять пропорции и работать с ними, то есть выражать некоторые элементы из равенства.