Принцип работы сварочного преобразователя. Сварочный преобразователь. Сварочные преобразователи Из чего состоит сварочный преобразователь

Специфическая разновидность сварочного аппарата, применяемая в основном в промышленности, а также в некоторых видах строительно-монтажных работ – это и есть сварочный преобразователь.

Он называется так потому, что преобразовывает переменный ток от бытовой или промышленной сети в постоянный ток, оптимально подходящий для большинства видов сварки.

Несмотря на суть конечного результата - постоянный ток - преобразователь действует по совершенно иному принципу, чем выпрямитель или инвертор.

Его конструкция предполагает удлиненную цепочку прохождения энергии. Сначала переменный ток переходит в механическую энергию, а она в свою очередь преобразуется обратно в электрическую, но уже постоянного характера.

Конструктивно преобразователь состоит из электродвигателя, как правило, асинхронного, и генератора постоянного тока, объединенных в одном корпусе. Поскольку генератор, использующий принцип электромагнитной индукции, также вырабатывает переменный ток, в схеме присутствует коллектор, преобразующий его в постоянный.

Пример оборудования

В качестве примера можно рассмотреть широко известный в профессиональных кругах сварочный преобразователь ПСО-500.

Он состоит из сигарообразного корпуса, на котором сверху закреплен блок с контрольной аппаратурой, управляющими элементами (пакетным выключателем и реостатным регулятором) и контактами для подключения электродов, а внутри на одном вращающемся валу смонтированы асинхронный двигатель и генератор, разделенные вентилятором охлаждения.

Прямая электрическая связь между генератором и двигателем отсутствует . Двигатель, запускаемый от питающей сети, начинает с высокой скоростью вращать вал, с которым связан его ротор.

На этот вал насажен и якорь генератора. В результате вращения якоря в его обмотках индуцируется переменный ток, который коллектором преобразуется в постоянный и подается на сварочные клеммы.

ПСО-500 относится к однопостовым сварочным преобразователям мобильного типа. Он смонтирован на трехколесной тележке. Величина сварного тока, выдаваемого ПСО-500, может достигать 300 или 500 А - в зависимости от перемычки, соединяющей одну из клемм с последовательной обмоткой генератора.

Выходной ток регулируется вручную, с помощью верньера, связанного с реостатом (устройством изменения сопротивления). Контроль тока производится по встроенному амперметру.

Числовой индекс в маркировке - 350, 500, 800, 1000 - означает максимальный постоянный ток, на работу с которым рассчитан данный преобразователь. Некоторые модели с помощью верньера могут быть настроены так, чтобы выдавать сварочный ток больше номинального, но работа в таком режиме чревато перегревом и быстрым выходом аппарата из строя.

Достоинства

Как и любое другое оборудование, сварочные преобразователи (которые исторически появились гораздо раньше инверторов) имеют определенные преимущества, и одновременно несут ряд определенных неудобств. К их достоинствам можно отнести:

  • большой сварочный ток - у некоторых моделей, в частности, ПСО-500 и ПСГ-500, он доходит до 500 А, есть и более мощные устройства;
  • неприхотливость в работе;
  • нечувствительность к перепадам входного напряжения;
  • сравнительно высокая надежность при квалифицированном обслуживании;
  • хорошая ремонтопригодность, удобство сервисного обслуживания.

Током, который способны выдавать эти устройства, можно варить очень толстые швы, порядка 10-30 мм. Это еще одно важное преимущество, благодаря которому используют сварочные преобразователи.

Недостатки

Однако конструктивные особенности определяют и основные недостатки сварочных преобразователей, из-за которых их, по крайней мере, в бытовой сфере (сварочные работы в мелком бизнесе, на даче, в гараже) вытеснили инверторы. В первую очередь это:

  • большие габариты и масса (она может доходить до полутонны и выше);
  • низкий КПД;
  • повышенная электрическая опасность;
  • шумность работы;
  • необходимость в сервисном обслуживании.

Принцип их действия - переход электрической энергии в механическую и обратно - подразумевает большие энергетические затраты на вращение вала. Этим обусловлен очень высокий расход электроэнергии, делающий устройство невыгодным для «домашнего» применения.

Кроме того, наличие вращающихся с высокой скоростью деталей уменьшает степень надежности машины. Узким местом варочного преобразователя, как и самого электродвигателя, являются шарикоподшипники, на которых закреплен вал.

Они нуждаются в периодической проверке и замене масла 1-2 раза в год. Также необходимо контролировать состояние коллектора и щеток токосъемников.

Под повышенной электрической опасностью имеется в виду тот факт, что перед началом сварочных работ преобразователь обязательно должен быть заземлен, подключение его к сети по правилам должно проводиться только электриком.

Классификация

Сварочные преобразователи классифицируются по различным параметрам. В том числе по количеству (одно- и многопостовые) и по типу привода (от электродвигателя либо, например, от двигателя внутреннего сгорания). По конструктивному исполнению они могут быть стационарными и передвижными, в одинарном или сдвоенном корпусе.

Преобразователи также отличаются по форме выходной характеристики. Для многих видов работ решающее значение имеет именно эта классификация. По форме выходной характеристики сварочные преобразователи разделяют на устройства, выдающие падающую либо жесткую характеристику (последние также способны выдавать пологопадающую).

Существуют и универсальные преобразователи, в зависимости от установленного переключателя способные работать как в том, так и в другом режиме.

Дело в том, что специфика сварочных работ в защитных газах, автоматическая или полуавтоматическая, требует исключительно жесткой выходной характеристики.

К таким преобразователям относится, к примеру, система ПСГ-500. Сварочные преобразователи модельного ряда ПСО имеют падающую характеристику, ПСУ - универсалы, способные переключаться в нужный режим работы.

ПСО и другие виды преобразователей с падающей характеристикой применяются в промышленности, в системах автоматической и ручной сварки, оснащенных авторегуляторами напряжения.

С точки зрения прикладной физики преобразователи также подразделяются в зависимости от технологии, реализованной в генераторе. Генератор может быть с расщепленными полюсами, с отдельными намотками намагничивания и размагничивания, с намоткой размагничивания и независимым возбуждением. Но на практике существенной разницы в значимых технических характеристиках между всеми этими типами нет.

Сварочный преобразователь состоит из асинхронного двигателя и генератора постоянного тока, собранных в одном корпусе.

Ротор двигателя и якорь генератора находятся на одном валу. Преобразователь установлен на раме или на колесах.

Генераторы, комплектующие сварочные преобразователи, работают по схемам, показанным на рис. 1.

Генератор с независимой обмоткой возбуждения и размагничивающей последовательной обмоткой (рис. 1,в). Независимая обмотка 1, питающаяся от сети переменного тока через селеновый выпрямитель, создает магнитный поток, индуктирующий на щетках генератора напряжение, необходимое для возбуждения дуги. Падающую характеристику создает размагничивающая обмотка 2, поток которой направлен встречно потоку обмотки 1. Регулирование сварочного тока производится переключением числа витков последовательной обмотки: зажим а - диапазон больших токов, зажим б - диапазон малых токов. В пределах каждого диапазона сварочный ток плавно регулируется реостатом R.

По этой схеме выполнены преобразователи ПСО-120, ПСО-ЗООА, ПД-303, ПСО-500, ПСО-800, ПС-1000-III, АСО-2000.

Генератор с параллельной обмоткой возбуждения и размагничивающей последовательной обмоткой (рис. 1,б). Магнитные полюса этого генератора должны иметь остаточный магнетизм, поэтому их изготовляют из ферромагнитной стали.

Параллельная обмотка возбуждения 1 питается от щеток а - с; магнитный поток этой обмотки индуктирует на щетках а - в напряжение, необходимое для зажигания дуги. Напряжение на щетках а - с не меняется в течение всех стадий сварочного процесса (холостой ход, горение дуги, короткое замыкание). Последовательная обмотка 2 при горении дуги размагничивает генератор, создавая падающую характеристику. Регулирование сварочного тока производится так же, как и в генераторе, описанном выше.

По этой схеме выполнены преобразователи ПД-101, ПС-300-1, ПСО-300М, ПС-500.

Генераторы, построенные по этой схеме, устанавливают на агрегатах с двигателями внутреннего сгорания.

Генератор с расщепленными полюсами (рис. 1,в). На магнитных полюсах этого генератора имеются только параллельные обмотки 1, одна из которых регулируется. Напряжение на щетках а -с не меняется в течение всех стадий сварочного процесса. Падающая характеристика создастся размагничивающим действием потока (реакции) якоря, направленным навстречу магнитному потоку регулируемой обмотки.

Сварочный ток регулируют реостатом R в цепи обмотки возбуждения. В преобразователях этого типа довоенного выпуска (СМГ-2. СУГ-2А, СУГ-2Б и др.) грубая регулировка тока осуществлялась сдвигом щеток: большие токи - сдвиг против вращения якоря, малые токи - сдвиг по вращению.

По этой схеме выполнены преобразователи ПС-300М, ПС-ЗООМ-1, ПС-300Т. В эксплуатации находится значительное количество преобразователей, выпущенных до войны и в послевоенный период: СМГ-2А, СМГ-2Б, СУГ-2А, СУГ-2Б, СУГ-2р и др.

Технические характеристики однопостовых преобразователей приведены в табл. 1.

Таблица 1. Технические характеристики однопостовых сварочных преобразователей с падающей характеристикой

Характеристика

Преобразователи с независимым возбуждением и последовательной размагничивающей обмоткой

ПШ-120 ПСО-300А ПД-303 ПСО-500 П СО-800 AСO-2000 ПС-1000-III
Тип генератора ГСО-120 ГСО-300А - ГСО-500 ГСО-800 СГ-1000-II ГС-1000-III
Номинальный сварочный ток, А 120 300 300 500 800 1000X2 1000
Напряжение холостого хода, В 48-65 55-80 65 58-86 60-90
30-120 75-300 80-300 125-600 200-800 300-1200X2 300-1200
7,3 12,5 10,0 28,0 55 56,0 55,0
2900 2890 2890 2930 1460 1460
К. п. д. преобразователя, % 55 60 - 59 57 59 60
1055 1015 1052 1275 4000 1465
длина 508 770 935 770
ширина 550 590
высота 730 980 996 1080 1190 910
Масса, кг 155 400 331 540 1040 4100 1600

Характеристика Преобразователи с самовозбуждением: и последовательной размагничивающей обмоткой Преобразователи с расщепленными полюсами
ПД-101 ПС-300-1 псо-зоом ПС-500 ПС-300М СУГ-2р-у
Тип генератора ГД-101 ГСО-300 ГСО-ЗООМ ГС-500 СГ -300Л1 СМГ-2Г-Ш
Номинальный сварочный ток, А 125 300 300 500 300 300
Напряжение холостого хода, В 80 75 60 62-80 72
Пределы регулирования сварочного тока, А 15-135 75-320 100-300 120-600 80-340 45- 320
Мощность преобразователя, кВт 7,5 14,0 17,0 28,0 14,0 12,0
Скорость вращения якоря, об/мин 2910 1450 2910 1450 1450 1460
КПД преобразователя, % 60 70 70 55 57 58
Габаритные размеры, мм: длина 1026 1120 1400 1200 1G20
ширина 590 600 770 755 626 1080
высота 838 780 1100 1180
Масса, кг 222 430 350 940 570 550

Примечание. Для всех преобразователей ПР 65%; для ПД-303 и ПСО-ЗООМ - 60%.

Классификация сварочных преобразователей и агрегатов. Для сварки постоянным током источниками питания служат сварочные преобразователи и сварочные агрегаты. Сварочный преобразователь состоит из генератора постоянного тока и приводного электродвигателя, сварочный агрегат - из генератора и двигателя внутреннего сгорания. Сварочные агрегаты употребляются для работы в полевых условиях и в тех случаях, когда в питающей электрической сети сильно колеблется напряжение. Генератор и двигатель внутреннего сгорания (бензиновый или дизельный) монтируются на общей раме без колес, на катках, колесах, в кузове автомашины и на базе трактора.

Для работы в разных условиях выпускаются агрегаты: АСБ-300-7 - бензиновый двигатель ГАЗ-320, смонтированный с генератором ГСО-300-5 на раме без колес; АСД-3-1 - дизельный двигатель и генератор СГП-3-VIII - в том же исполнении; АСДП-500 - как и предыдущий агрегат, но установленный на двухосном прицепе; СДУ-2 - агрегат, смонтированный на базе трактора Т-100М; ПАС-400-VIII - двигатель типа ЗИЛ-164. и генератор СГП-3-VI, смонтированные на жесткой раме, снабженной роликами для перемещения по ровному полу. Выпускаются и другие агрегаты, отличающиеся конструктивным исполнением.

Сварочные генераторы бывают однопостовыми и многопостовыми, рассчитанными для одновременного питания нескольких сварочных постов. Однопостовые сварочные генераторы изготовляются с падающей или жесткой внешними характеристиками.

Большая часть генераторов, комплектующих сварочные агрегаты и преобразователи (типа ПС и ПСО), имеют падающую внешнюю характеристику. Генератор преобразователя типа ПСГ имеет жесткую вольт-амперную характеристику. Выпускаются генераторы универсальные, позволяющие получать и падающую, и жесткую характеристики (преобразователи типа ПСУ).

Сварочные преобразователи ПСО-500, ПСО-ЗООА, ПСО-120, ПСО-800, ПС-1000, АСО-2000, ПСМ-1000-4 и другие снабжаются в основном асинхронными трехфазными короткозамкнутыми двигателями в однокорпусном исполнении. Они имеют колеса для перемещения по цеху или устанавливаются неподвижно на плите.

Технические данные некоторых преобразователей приведены в табл. 51.

Устройство и работа сварочных генераторов. Промышленностью выпускаются сварочные генераторы трех типов: с независимой и параллельной обмотками возбуждения, размагничивающей последовательной обмоткой и с расщепленными полюсами.

Генераторы с независимой обмоткой возбуждения и размагничивающей последовательной обмоткой (рис. 119) применяются главным образом в сварочных преобразователях ПС0420, ПСО-ЗООА, ПСО-500, ПСО-800, ПС-1000, АСО-2000, отличающихся мощностью и конструктивным оформлением.

На схеме генератора (рис. 199, а ) показаны две обмотки возбуждения: независимая Н и последовательная С , которые расположены на разных полюсах. В цепь независимой обмотки включен реостат РТ . Последовательная обмотка изготовлена из шины большою сечения, так как в ней протекает большой сварочный ток. От части ее витков сделана отпайка, вынесенная на переключатель П .

Магнитный поток последовательной обмотки направлен навстречу магнитному потоку, создаваемому независимой обмоткой возбуждения. В результате действия этих потоков появляется результирующий поток. При холостом ходе последовательная обмотка не работает.

Напряжение холостого хода генератора определяется током в обмотке возбуждения. Это напряжение можно регулировать реостатом РТ , изменяя величину тока в цепи намагничивающей обмотки.

При нагрузке в последовательной обмотке появляется сварочный ток, создающий магнитный поток противоположного направления. С увеличением сварочного тока противодействующий магнитный поток увеличивается, а рабочее напряжение уменьшается. Таким образом образуется падающая внешняя характеристика генератора (рис. 119, б ).

Изменяют внешние характеристики регулированием тока в обмотке независимого возбуждения и переключением числа витков размагничивающей обмотки.

При коротком замыкании сила тока возрастает настолько, что размагничивающий поток резко увеличивается. Результирующий поток, а следовательно, и напряжение на клеммах генератора практически падают до нуля.

Сварочный ток регулируется двумя способами: переключением числа витков размагничивающей обмотки (два диапазона) и реостатом в цепи независимой обмотки (плавное регулирование). При подключении сварочного провода на левую клемму (рис. 119, а ) устанавливаются малые токи, на правую - большие.

Генераторы с параллельной намагничивающей и последовательной размагничивающей обмотками возбуждения относятся к системе генераторов с самовозбуждением (рис. 120). Поэтому их полюса изготовляются из ферромагнитной стали, имеющей остаточный магнетизм.

Как видно из схемы (рис. 120, а ), генератор имеет на основных полюсах две обмотки: намагничивающую Н и последовательно включенную размагничивающую С. Ток намагничивающей обмотки создается якорем самого генератора, для чего служит третья щетка С , расположенная на коллекторе посредине между основными щетками а и б .

Встречное включение обмоток создает падающую внешнюю характеристику генератора (рис. 120, б ). Сварочный ток плавно регулируется реостатом РП, включенным в цепь обмотки самовозбуждения. Для ступенчатого регулирования тока размагничивающая обмотка секционирована так же, как и в генераторе типа ПСО. По такой схеме работают генераторы сварочных преобразователей ПС-300, ПСО-ЗООМ, ПС-3004, ПСО-300 ПС-500, САМ-400.

Генератор с расщепленными полюсами (рис. 121) не имеет последовательной обмотки. В этом генераторе расположение полюсов отличается от обычных электрических генераторов постоянного тока. Магнитные полюса не чередуются (за северным следует южный, затем опять северный и т. д.), а одноименные полюса располагаются рядом (два северных и два южных, рис. 121, б ). Горизонтальные полюса Nr называются главными, а вертикальные N п - поперечными.


Рис. 121. Генератор с расщепленными полюсами: а, б - принципиальные магнитная и электрическая схемы; Ф г я, Ф п я - магнитные потоки якоря, Фг - главный магнитный поток, Ф п - поперечный магнитный поток, ГН - нейтраль, П - обмотка поперечных полюсов, Гл - обмотка главных полюсов, РТ - реостат

Главные полюса имеют вырезы, уменьшающие их поперечное сечение для полного насыщения магнитным потоком уже при холостом ходе. Поперечные полюса имеют большое сечение и работают на всех режимах при неполном насыщении. На главных полюсах размещены только главные обмотки возбуждения, а на поперечных - только поперечные. В цепи поперечных обмоток возбуждения установлен регулировочный реостат РТ . Обе обмотки включены между собой параллельно и получают питание от щеток, т. е. генератор работает с Самовозбуждением. Генератор имеет две главные щетки а и б и дополнительную щетку с .

При нагрузке в обмотке якоря появляется ток, который создает магнитный поток якоря, подмагничивающий главные полюса и размагничивающий поперечные. Так как главные полюса полностью насыщены, то действие подмагничивающего потока не сказывается. С увеличением сварочного тока магнитный поток якоря увеличивается, его размагничивающее действие (против потока поперечных полюсов) возрастает и это приводит к уменьшению рабочего напряжения; создается падающая внешняя характеристика генератора. Таким образом, падающая характеристика генератора получается за счет размагничивающего действия магнитного потока якоря.

Плавное регулирование сварочного тока осуществляется реостатом в цепи поперечной обмотки возбуждения 1 .

1 (В выпускавшихся ранее генераторах этого типа (СУГ-2а, СУГ-26 и др.) грубая регулировка тока осуществлялась смещением щеток от нейтрали. )

По схеме с расщепленными полюсами работают генераторы преобразователей ПС-300М, СУГ-2ру и др.

Конструкции однопостовых сварочных преобразователей. Преобразователи ПС-300-1 и ПСО-300 служат для питания одного поста, для сварки, наплавки и резки. Преобразователи рассчитаны на рабочий ток от 65 до 340 А.

Сварочный генератор преобразователя относится к типу генератора с параллельной намагничивающей и последовательной размагничивающей обмотками возбуждения.

Генератор имеет крутопадающие внешние характеристики (рис. 120, б ) и два диапазона сварочных токов: 65 - 200 А и при подключении сварочного кабеля к левому зажиму (+) с полным числом витков последовательной размагничивающей обмотки; 160 - 340 А - при подключении к правому зажиму (+) с частью витков последовательной обмотки. В цепь намагничивающей обмотки возбуждения включен реостат типа РУ-Зб сопротивлением 2,98 Ом на токи 4,5 - 12 А, предназначенный для регулирования сварочного тока.

Преобразователь ПСГ-300-1 предназначен для питания поста полуавтоматической сварки в защитном газе. Генератор преобразователя имеет жесткую внешнюю характеристику, которая создается подмагничивающим действием последовательной обмотки возбуждения. Независимая обмотка возбуждения питается от селенового выпрямителя, подключенного к сети переменного тока через феррорезонансный стабилизатор. В цепь обмотки независимого возбуждения включен реостат, позволяющий плавно регулировать напряжение на зажимах генератора от 16 до 40 В. Преобразователь включается в сеть пакетным выключателем. Пределы регулирования сварочного тока 75 - 300 А.

Универсальные сварочные преобразователи ПСУ-300, ПСУ-500 имеют как падающие, так и жесткие внешние характеристики. Преобразователи этого типа состоят из однопостового сварочного генератора постоянного тока и приводного трехфазного асинхронного двигателя с короткозамкнутым ротором, находящихся в одном корпусе.

Сварочный генератор типа ГСУ изготовляется с четырьмя основными и двумя дополнительными полюсами (рис. 122). На двух основных полюсах уложены витки основной намагничивающей обмотки возбуждения, которая получает питание от сети через стабилизирующий трансформатор и селеновый выпрямитель. На двух других основных полюсах уложены витки последовательной обмотки возбуждения; магнитный поток этих полюсов направлен навстречу основному намагничивающему потоку. Обмотки дополнительных полюсов предназначены для улучшения коммутации.

Для получения крутопадающих внешних характеристик включается независимая обмотка возбуждения, последовательная размагничивающая и часть витков обмотки дополнительных полюсов.

При переходе на жесткие внешние характеристики (рис. 122, б ) последовательная размагничивающая обмотка частично отключается, но включается увеличенное количество витков обмотки дополнительных полюсов.

Изменение вида характеристики осуществляется переключением пакетного переключателя, установленного на распределительном устройстве, и присоединением сварочных проводов к двум соответствующим зажимам на клеммовой доске.

Сварочный преобразователь представляет собой комбинацию электродвигателя переменного тока и постоянного тока. Электрическая энергия сети переменного тока преобразуется в механическую энергию электродвигателя, вращает вал генератора и преобразуется в электрическую энергию постоянного сварочного тока. Поэтому КПД преобразователя невелик: из-за наличия вращающихся частей они менее надежны и удобны в эксплуатации по сравнению с выпрямителями. Однако для строительно-монтажных работ использование генераторов имеет преимущество по сравнению с другими источниками благодаря их меньшей чувствительности к колебаниям сетевого напряжения.

Для питания электрической дуги постоянным током выпускаются передвижные и стационарные сварочные преобразователи . На рис. 11 показано устройство одно-постового сварочного преобразователя ПСО-500, выпускаемого серийно нашей промышленностью.

Однопостовой сварочный преобразователь ПСО-500 состоит из двух машин: из приводного электродвигателя 2 и сварочного генератора ГСО-500 постоянного тока, расположенных в общем корпусе 1. Якорь 5 генератора и ротор электродвигателя расположены на общем валу, подшипники которого установлены в крышках корпуса преобразователя. На валу между электродвигателем и генератором находится вентилятор 3, предназначенный для охлаждения агрегата во время его работы. Якорь генератора набран из тонких пластин электротехнической стали толщиной до 1 мм и снабжен продольными пазами, в которых уложены изолированные витки обмотки якоря. Концы обмотки якоря припаяны к соответствующим пластинам коллектора в. На полюсах магнитов насажены катушки 4 с обмотками из изолированной проволоки, которые включаются в электрическую цепь генератора.

Генератор работает по принципу электромагнитной индукции. При вращении якоря 5 его обмотка пересекает магнитные силовые линии магнитов, в результате чего в обмотках якоря наводится переменный электрический ток, который при помощи коллектора 6 преобразуется в постоянный; с щеток токосъемника 7, при нагрузке в сварочной цепи, ток течет с коллектора к клеммам 9.

Пускорегулирующая и контрольная аппаратура преобразователя смонтирована на корпусе 1 в общей коробке 12.

Преобразователь включается пакетным выключателем 11. Плавное регулирование величины тока возбуждения и регулирование режима работы сварочного генератора производят реостатом в цепи независимого возбуждения маховичком S. С помощью перемычки, соединяющей дополнительную клемму с одним из положительных выводов от последовательной обмотки, можно устанавливать сварочный ток для работы до 300 и до 500 А. Работа генератора на токах, превышающих верхние пределы (300 и 500А), не рекомендуется, так как возможен перегрев машины и нарушится система коммутации.

Величина сварочного тока определяется амперметром 10, шунт которого включен в цепь якоря генератора, смонтированного внутри корпуса преобразователя.

Обмотки генератора ГСО-500 выполняются из меди или алюминия. Алюминиевые шины армируют медными пластинками. Для защиты от радиопомех, возникающих при работе генератора, применен емкостный фильтр из двух конденсаторов.

Перед пуском преобразователя в работу необходимо проверить заземление корпуса; состояние щеток коллектора; надежность контактов во внутренней и внешней цепи; штурвал реостата повернуть против часовой стрелки до упора; проверить, не касаются ли концы сварочных проводов друг друга; установить перемычку на доске зажимов соответственно требуемой величине сварочного тока (300 или 500 А).

Пуск преобразователя осуществляется включением двигателя в сеть (пакетным выключателем 11). После подсоединения к сети необходимо проверить направление вращения генератора (если смотреть со стороны коллектора, ротор должен вращаться против часовой стрелки) и в случае необходимости поменять местами провода в месте их подключения к питающей сети.

Правила безопасности при эксплуатации сварочных преобразователей

При эксплуатации сварочных преобразователей необходимо помнить:

  • напряжение на клеммах двигателя, равное 380/220 В, является опасным. Поэтому «ни должны быть закрыты. Все подсоединения со стороны высокого напряжения (380/220 В) должен осуществлять только электрик, имеющий право на производство электромонтажных работ;
  • корпус преобразователя должен быть надежно заземлен;
  • напряжение на клеммах генератора, равное при нагрузке 40 В, при холостом ходе генератора ГСО-500 может повышаться до 85 В. При работе в помещениях и на открытом воздухе при наличии повышенной влажности, пыли, высокой окружающей температуры воздуха (выше 30 o С), токопроводящего пола или при работе на металлических конструкциях напряжение выше 12 В считается опасным для жизни.

При всех неблагоприятных условиях (сырое помещение, токопроводящий пол и др.) необходимо пользоваться резиновыми ковриками, а также резиновой обувью и перчатками.

Опасность поражения глаз, рук и лица лучами электрической дуги, брызгами расплавленного металла и меры защиты от них те же, что и при работе от .

Сварочные преобразователи под­разделяют на следующие группы: по числу питаемых постов - одно - постовые, предназначенные для пита­ния одной сварочной дуги; много­постовые, питающие одновременно несколько сварочных дуг; по спо­собу установки -стационар­ные, устанавливаемые неподвижно на фундаментах; передвижные, монти­руемые на тележках; по р о д у дви­гателей, приводящих генератор во вращение,- машины с электрическим приводом; машины с двигателем внут­реннего сгорания (бензиновым или ди­зельным) ; по способу выполне­ния - однокорпусные, в которых ге­нератор и двигатель вмонтированы в единый корпус; раздельные, в которых генератор и двигатель установлены на одной раме, а привод осуществляется через соединительную муфту.

Однопостовые сварочные преобра­зователи состоят из генератора и электродвигателя или двигателя внут­реннего сгорания. Электрическая схе­ма сварочного генератора обеспечи­вает падающую внешнюю характерис­тику и ограничение тока короткого замыкания. Внешняя вольт-амперная характеристика / (рис. 14) показывает зависимость между напряжением и то­ком на клеммах сварочной цепи гене­ратора. Для устойчивости горения сварочной дуги характеристика гене­ратора / должна пересекать характе­ристику дуги III. При возбуждении дуги напряжение изменяется (//) от точки I к точке 2. При возникновении

Генераторы с расщепленными по­люсами обеспечивают падающую внешнюю характеристику, используя размагничивающее действие магнит­ного потока якоря. На рис. 15 показа­на схема сварочного генератора такого типа. Генератор имеет четыре основных (N г и Sr - главные, Nn И Sn - поперечные) и два дополни­тельных (N и S ) полюса. При этом одноименные основные полюсы распо­ложены рядом, составляя как бы один раздвоенный полюс. Обмотки возбуж­дения имеют две секции: нерегулируе­мую 2 и регулируемую 1. Нерегулируе­мая обмотка расположена на всех четырех основных полюсах, а регули­руемая - только нк поперечных. В цепь регулируемой обмотки возбужде­ния включен реостат 3. На дополни­тельных полюсах расположена сериес - ная обмотка 4. По нейтральной ли­нии симметрии О - О между разно­именными полюсами на коллекторе ге­нератора расположены основные щет­ки а и ft, к которым подключается сварочная цепь. Дополнительная щет­ка с служит для питания обмоток возбуждения.

При холостом ходе генератора (рис. 16, а) обмотки полюсов создают два магнитных потока Фг и Фп, кото­рые индуцируют э. д. с. в обмотке якоря. При замыкании сварочной цепи (рис. 16, б) по обмотке якоря потечет ток, который создает магнитный поток якоря Фя, направленный по линии основных щеток и замыкающийся че­рез полюсы генератора. Магнитный поток якоря Фя можно разложить на два составляющих потока Фяг и Фяп. Поток Фяг по направлению будет сов­падать с потоком Фг главных полюсов, но усилить его не может, так как главные полюсы генератора имеют вырезы, уменьшающие площади их по­перечных сечений, и поэтому они рабо­тают при полном магнитном насы­щении (т. е. магнитный поток этих по­люсов независимо от нагрузки остает­ся практически постоянным). Поток ФЯп направлен против потока Ф„ поперечных-полюсов и поэтому ослаб­ляет его и даже может изменить направление суммарного потока. Та­кое действие магнитного потока якоря приводит к ослаблению суммарного
магнитного погона генератора, а отсю­да к уменьшению напряжения на ос­новных щетках генератора. Чем боль­ший ток протекает по обмотке якоря, тем больше магнитный поток Фя, тем больше снижается напряжение. При коротком замыкании сварочной цепи напряжение на основных щетках почти достигает нулевого значения.

Сварочный ток регулируют в два приема - грубо и точно. При грубом регулировании смещают щеточную траверсу, на которой расположены все три щетки генератора. Если сдвигать щетки по направлению вращения яко­ря, то размагничивающее действие потока якоря увеличивается и сва­рочный ток уменьшается. При обрат­ном сдвиге размагничивающее дейст­вие уменьшается и сварочный ток увеличивается. Таким образом уста­навливают интервалы больших и ма­лых токов. Плавное и точное регу­лирование тока производят реостатом, включенным в цепь обмотки возбужде­ния. Увеличивая или уменьшая рео­статом ток возбуждения в обмотке поперечных полюсов, изменяют маг­нитный поток Фп, тем самым изменяют напряжение генератора и сварочный ток.

В генераторах с расщепленными полюсами поздних выпусков свароч­ный ток регулируют изменением числа витков секционированных обмоток по­люсов генератора и реостатом, вклю­ченным в цепь обмотки возбуждения. Реостат устанавливается на корпусе генератора и имеет шкалу с деле­ниями в амперах. По такой схеме работают генераторы СГ-300М-1, ис­пользуемые в преобразователях ПС-300М-1.

Принципиальная схема генератора с размагничивающим действием пос­ледовательной обмотки возбуждения, включенной в сварочную цепь, пред­ставлена на рис. 17. Генератор имеет две обмотки: обмотку возбуж­дения 1 и размагничивающую после­довательную обмотку 2. Обмотка воз­буждения питается либо от основной и дополнительной щеток (b и с), либо от специального источника постоян­ного тока (от сети переменного тока через селеновый выпрямитель). Маг-

Нитный поток Фв, создаваемый этой обмоткой, постоянный и не зависит от нагрузки генератора. Размагничиваю­щая обмотка включена последователь­но с обмоткой якоря так, что при горении дуги сварочный ток, проходя через обмотку, создает магнитный по­ток Фп, направленный против потока Ф0. Следовательно, э. д. с. генератора будет индуцироваться результирую­щим магнитным потоком Фв - Фп - С увеличением сварочного тока маг­нитный поток Фп возрастает, а резуль­тирующий магнитный поток Ф„ - Фм уменьшается. Как следствие, умень­шается индуцируемая э. д. с. генера­тора. Таким образом, размагничиваю­щее действие обмотки 2 обеспечивает получение падающей внешней харак­теристики генератора. Сварочный ток регулируется переключением витков последовательной обмотки (грубая регулировка - два диапазона) и рео­статом обмотки возбуждения (плав­ная и точная регулировка в пределах каждого диапазона). По такой схеме выпускаются генераторы ГСО-120, ГСО-ЗОО, ГС0500, ГС-500 и др. Крат­кая техническая характеристика сва-

Рочных преобразователей дана в табл. 1.

На рис. 18 представлен однопостовой пере­движной сварочный преобразователь ПСО-500, выпускаемый серийно и нашедший широкое применение при строительно-монтажных рабо­тах. Он состоит из генератора ГСО-5СЮ и трехфазного асинхронного электродвигателя АВ-72-4, смонтированных в едином корпусе на колесах для перемещения по строительной пло­щадке. Преобразователь предназначен для руч­ной дуговой сварки, полуавтоматической шлан­говой и автоматической сварки под флюсом. Для грубого регулирования сварочного тока (переключения витков последовательной обмот­ки) на клеммовую доску генератора выведены один отрицательный и два положительных кон­такта. Если необходим сварочный ток в преде­лах 120...350 А, то сварочные провода присо­единяют к отрицательному и среднему положи­тельному контактам. При работе на токах 350...600 А сварочные провода присоединяют к отрицательному и крайнему положительному контактам. Плавно сварочный ток регулируют реостатом, включенным в цепь обмотки неза­висимого возбуждения. Реостат расположен на корпусе машины и имеет маховик с токоука- зателем. Шкала имеет два ряда цифр, соответ­ствующих подключаемым контактам: внутрен­ний ряд - до 350 А и наружный ряд - до 6СЮ А.

Для выполнения сварочных работ при отсутствии электроэнергии (на новостройках, на монтажных работах в полевых условиях, при сварке газо­нефтепроводов, при установке мачт электропередач высокого напряжения и др.) применяют передвижные сва­рочные агрегаты, состоящие из сва­рочного генератора и двигателя внут­реннего сгорания. Краткая техничес­кая характеристика наиболее рас­пространенных сварочных агрегатов с двигателями внутреннего сгорания дана в табл. 2.

Таблица 2

Марка агрегата

Марка гене­ратора

Номинальное напряже­ние, В

Пределы ре­гулирования сварочного тока, А

Двигатель

Масса агре­гата, кг

Мощность, кВт (л. с.)

На рис. 19 представлен сварочный агрегат этой группы ПАС-400-VIII. Агрегат состоит из генератора СГП-3-VI и двигателя внутреннего сгорания ЗИЛ-120 или ЗИЛ-164. Генератор работает по схеме с размагничивающей последо - вательиой обмоткой. Регулирование тока произ водят реостатом цепи основной обмотки воз­буждения. Двигатель с варочного агрегата спе­циально переоборудован для режима длитель­ной стационарной работы: он имеет автомати­ческий центробежный регулятор скорости вра­щения; ручное регулирование для работы при малых скоростях; автоматическое выключение зажигания при внезапном увеличении скорости. Сварочный агрегат смонтирован на жесткой металлической раме с катками для переме­щения. Наличие крыши и боковых металличес­ких штор, защищающих от атмосферных осад­ков, позволяет использовать агрегат для работы на открытом воздухе.

Для сварки в защитных газах, а также для полуавтоматической и авто­матической сварки применяют генера­торы с жесткой или возрастающей внешней характеристикой. Такие гене­раторы имеют обмотки независимого возбуждения и подмагничивающую последовательную обмотку. При хо­лостом ходе э. д. с. генератора наво­дится магнитным потоком, который со­здается обмоткой независимого воз­буждения. При рабочем режиме сва­рочный ток, проходя через последо­вательную обмотку, создает магнит­ный поток, совпадающий по направ­лению с магнитным потоком обмотки независимого возбуждения. Тем са­мым обеспечивается жесткая или воз­растающая вольт-амперная харак­теристика.

На рис. 20 представлен преобразователь такого типа ПСГ-350, состоящий из свароч­ного генератора постоянного тока ГСГ-350 и трехфазного асинхронного электродвигателя АВ-61-2 мощностью 14 кВт. Генератор имев! обмотку независимого возбуждения и подмаг­ничивающую последовательную обмотку. Об­мотка независимого возбуждения питается от внешней сети через селеновые выпрямители и стабилизатор напряжения, который исключает влияние колебаний напряжения в сети на ток возбуждения. Последовательная обмотка раз­делена на две секции: при включении в свароч­ную цепь части витков генератор работает на режиме жесткой характеристики, а при ис­пользовании всех витков обмотки генератор дает возрастающую внешнюю характеристику. Ге­нератор и двигатель размещены в общем корпу­се и смонтированы на тележке.

Универсальные преобразователи ПСУ-300 и ПСУ-500-2, предназначен­ные для ручной сварки, автоматичес­кой сварки под флюсом, а также автоматической и полуавтоматической сварки в защитных газах, обеспечи­вают как падающую, так и жесткую внешнюю характеристику. В этих преобразователях, переключая неза­висимую и последовательную обмотки генератора, можно создавать размаг­ничивающий и подмагничивающий по­токи и соответственно получать ту или иную характеристику.

При работе на строительной пло­щадке или заводе нескольких свароч­ных постов, расположенных недалеко друг от друга, применяют многопосто­вой сварочный преобразователь. Внешняя характеристика многопос­тового сварочного генератора должна быть жесткой, т. е. независимо от количества работающих постов напря­жение генератора должно быть по­стоянным. Для получения постоянного напряжения многопостовои генератор (рис. 21) имеет параллельную обмот­ку возбуждения 1, создающую магнит­ный поток 0i и последовательную обмотку 3, создающую магнитный по­ток Фа того же направления.

При холостом ходе э. д. с. генерато­ра индуцируется только магнитным по­током Фь так как в последовательной обмотке ток отсутствует. Напряжение генератора достаточно для зажигания дуги. Во время сварки появляется ток в обмотке якоря и, следовательно, в последовательной обмотке возбуж­дения. При этом появляется магнит­ный поток Ф^ и э. д. с. будет индуциро­ваться суммарным потоком 0i + Фг. Падение напряжения внутри генерато­ра при рабочем режиме компенсирует­ся увеличивающимся магнитным пото­ком, и поэтому напряжение остается равным напряжению холостого хода. Для получения падающей внешней характеристики сварочные посты включают в цепь генератора через регулируемые балластные реостаты 4. Напряжение генератора регулируют реостатом 2, включенным в цепь па­раллельной обмотки возбуждения. Сварочный ток устанавливают измене­нием сопротивления балластного реостата.

Многопостовой сварочный пре­образователь ПСМ-1000 (рис. 22) состоит из сварочного генератора по­стоянного тока типа СГ-1000 и трех­фазного асинхронного двигателя, смонтированных в одном корпусе. Генератор СГ-1000, шестиполюсный, с самовозбуждением, имеет параллель-

JS 220/3808 15 кВт

Ную и последовательную обмотки, создающие магнитные потоки одина­кового направления. В комплект сва­рочной машины входят девять бал­ластных реостатов РБ-200, позволяю­щих развернуть девять постов.

Преобразователи ПСМ-1000-1 и ПСМ-1000-11 существенных конструк­тивных отличий не имеют. Обмотки возбуждения генератора у

ПСМ-1000-I изготовлены из меди, а у ПСМ-1000-II - из алюминия. Послед­ней модификацией является ПСМ-1000-4, состоящий из генератора ГСМ-1000-4 и электродвигателя А2-82-2 мощностью 75 кВт. В комплект преобразователя входят балластные реостаты РБ-200-1 (9 шт.) или РБ-300-1 (6 шт.).

Балластный реостат РБ-200 (рис. 23) имеет пять рубильников, пере­ключением которых устанавливают со­противление реостата. Эти переключе­ния позволяют регулировать свароч­ный ток ступенчато через каждые 10 А в пределах 10...200 А.

Применение многопостовых сва­рочных преобразователей уменьшает площади, занимаемые сварочным обо­рудованием, сокращает расходы на ре­монт, уход и обслуживание. Однако к. п. д. сварочного поста значитель­но ниже, чем при однопостовом пре­образователе, вследствие больших по­терь мощности в балластных реоста­тах. Поэтому выбор одного много­постового или нескольких однопосто - вых сварочных агрегатов обосновы­вают технико-экономическим расчетом для конкретных условий.

Если экономически выгодно приме­нение однопостовых сварочных агре­гатов, но мощности одного генератора недостаточно для работы сварочного поста, включают параллельно два сва­рочных агрегата. При параллельном включении генераторов необходимо соблюдать следующие условия. Гене­раторы должны быть одинаковыми по типу и внешним характеристикам. До включения необходимо отрегулиро­вать генераторы на одинаковое напря-

Жение холостого хода. После включе­ния в работу следует с помощью регу­лирующих устройств установить по амперметру одинаковую нагрузку ге­нераторов. При неодинаковой нагруз­ке напряжение одного генератора бу­дет выше другого и генератор с низким напряжением, питаемый током второго генератора, будет работать как двига­тель. Это приведет к размагничива­нию полюсов генератора и выходу его нз строя. Поэтому следует по­стоянно следить за показаниями ам­перметров и при необходимости регу­лировать равномерность нагрузки.

Для уравнивания напряжения па­раллельно работающих генераторов с падающими внешними характеристи­ками применяют перекрестное питание их цепей возбуждения: обмотки воз­буждения одного генератора питают­ся от щеток якоря другого генерато­ра (рис.24) .Для этой цели генераторы имеют уравнительные контакты, кото­рые надо при параллельной работе соединить между собой.

При параллельном включении мно­гопостовых генераторов ПСМ-1000 необходимо клеммы на щитках генера­торов ГС-1000, обозначенные буквой У (уравнительный), соединить между собой проводом; при этом последова­тельные обмотки генераторов соеди­няются параллельно и, таким обра­зом, исключаются колебания в распре­делении нагрузки между генератора­ми.