Сравнительные характеристики стройматериалов. Общие технические свойства строительных материалов

Основные свойства строительных материалов определяют как правило области их применения и по савокупности признаков подразделяются на химические, физические, механические и технологические.
Свойства строительных материалов определяют области их применения. Только при правильной оценке качества материалов, т. е. их важнейших свойств, могут быть получены прочные и долговечные строительные конструкции зданий и сооружений высокой технико-экономическойэффективности.
Все свойства строительных материалов по совокупности признаков подразделяют на физические, химические, механические и технологические.
К относятся весовые характеристики материала, его плотность, проницаемость для жидкостей, газов, тепла, радиоактивных излучений, а также способность материала сопротивляться агрессивному действию внешней эксплуатационной среды. Последнее характеризует стойкость материала, обусловливающую в конечном итоге сохранность строительных конструкций.

Химические свойства оцениваются показателями стойкости материала при действии кислот, щелочей, растворов солей, вызывающих обменные реакции в материале и разрушение его. характеризуются способностью материала сопротивляться сжатию, растяжению, удару, а также вдавливанию внего постороннего тела и другим видам воздействий на материал с приложением силы.
Технологические свойства- способность материала подвергаться обработке при изготовлении из него изделий.

Свойства строительных материалов

Свойства строительного материала определяются его структурой. Для получения материала заданных свойств следует создать его внутреннюю структуру, обеспечивающую необходимые технические характеристики. В конечном итоге знание свойств материалов необходимо для наиболее эффективного его использования в конкретных условиях эксплуатации.

Таблица-1. Основные свойства некоторых строительных материалов(в воздушно-сухом состоянии)

Структуру строительного материала изучают на трех уровнях:
макроструктура - строение материала, видимое невооруженным глазом; микроструктура - строение, видимое через микроскоп; внутреннее строение вещества, изучаемое на молекулярно-ионном уровне(физико-химические методы исследования - электронная микроскопия, термография, рентгеноструктурный анализ и др.).

Макроструктуру твердых строительных материалов (исключая горные породы, имеющие свою геологическую классификацию) делят на следующие группы: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая и рыхло-зернистая (порошкообразная) .Искусственные конгломераты представляют собой большую группу.

Рисунок-1. Керамические стеновые материалы

Это различного вида бетоны, керамические и другие материалы. Ячеистая структура материала отличается наличием макропор. Она свойственна газо- и пенобетонам, газосиликатам и др. Мелкопористая структура характерна, например, для керамических материалов, получаемых в результате выгорания введенных органических веществ. Волокнистая структура присуща древесине, изделиям из минеральной ваты и др.

Рисунок-2. Рулонный материал для покрытия пола


Слоистая структура характерна для листовых, плитных и рулонных материалов. Рыхлозернистые материалы - это заполнители для бетонов, растворов, различного вида засыпка для теплозвукоизоляции и др.
Микроструктура строительных материалов может быть кристаллическая и аморфная. Эти формы нередко являются лишь различными состояниями одного и того же вещества, например кварц и различные формы кремнезема. Кристаллическая форма всегда устойчива. Чтобы вызвать химическое взаимодействие между кварцевым песком и известью в производстве силикатного кирпича, применяют автоклавную обработку сырца насыщенным водяным паром с температурой 175°С и давлением 0,8 МПа.

В то же время трепел (амфорная форма диоксида кремнезема) с известью при затворении водой образует гидросиликат кальция при нормальной температуре 15…25°С. Амфорная форма вещества может перейти в более устойчивую кристаллическую. Для каменных материалов практическое значение имеет явление полиморфизма, когда одно и то же вещество способно существовать в различных кристаллических формах, называемых модификациями.

Полиморфные превращения кварца сопровождаются изменением объема. Для кристаллического вещества характерны определенная температура плавления и геометрическая форма кристаллов каждой модификации. Свойства монокристаллов в разных направлениях неодинаковы. Теплопроводность, прочность, электропроводность, скорость растворения и явления анизотропии являются следствием особенностей внутреннего строения кристаллов. В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы хаотично. Эти материалы по своим свойствам относятся к изотропным, исключение составляют слоистые каменные материалы (гнейсы, сланцы и др.).

Рисунок-3. Камень -сланец

Внутренняя структура материала определяет его механическую прочность, твердость, теплопроводность и другие важные свойства.

Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими кристаллическую решетку. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе, или разных элементов, как в SiO2);

Ионами (разноименно заряженными, как в кальците СаСОз, или одноименными, как в металлах); целыми молекулами (кристаллы льда).
Ковалентная связь, обычно осуществляемая электронной парой, образуется в кристаллах простых веществ (алмазе, графите) или в кристаллах, состоящих из двух элементов (кварце, карборунде). Такие материалы отличаются высокой прочностью и твердостью, они весьма тугоплавки.
Ионные связи образуются в кристаллах материалов, где связь имеет в основном ионный характер, например гипс, ангидрид. Они имеют невысокую прочность, не водостойки.

Рисунок-4. Полевой шпат

В относительно сложных кристаллах (кальците, полевых шпатах) имеют место и ковалентная и ионная связи. Например, в кальците внутри сложного иона СО2/3 связь ковалентная, но с ионами Са2+ - ионная. Кальцит СаСО3 обладает высокой прочностью, но малой твердостью, полевые шпаты имеют высокие прочность и твердость.

Молекулярные связи образуются в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен из целых молекул, которые удерживаются друг около друга относительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (кристаллы льда), имеющими низкую температуру плавления.

Силикаты имеют сложную структуру. Волокнистые минералы (асбест) состоят из параллельных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические силы, недостаточные для разрыва цепей, расчленяют такой материал на волокна.

Рисунок-5. Пластинчатый минерал слюда


Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки. Сложные силикатные структуры построены из тетраэдров SiO4, связанных между собой общими вершинами (атомами кислорода) и образующих объемную решетку, поэтому их рассматривают как неорганические полимеры.

Строительный материал характеризуется химическим, минеральным и фазовым составом. Химический состав строительных материалов позволяет судить о ряде свойств материала - механических, огнестойкости, биостойкости, а также других технических характеристиках. Химический состав неорганических вяжущих материалов (извести, цемента и др.) и естественных каменных материалов удобно выражать содержанием в них оксидов (%).

Основные и кислотные оксиды химически связаны и образуют минералы, которые характеризуют многие свойства материала.Минеральный состав показывает, каких минералов и в каком количестве содержится в данном материале, например в портландцементе содержание трехкальциевого силиката (3CaO·SiO2) составляет 45…60%, причем при большем содержании этого минералла ускоряется процесс твердения и повышается прочность.

Фазовый состав и фазовые переходы воды, находящейся в его порах, оказывают большое влияние на свойства материала. В материале выделяют твердые вещества, образующие стенки пор, то есть каркас и поры наполненные воздухом или водой. Изменение содержания воды и ее состояния меняет свойства материала.

Классификация и стандартизация свойств

Основные и специальные свойства строительных материалов можно разделить на следующие группы с учетом тех воздействий на материалы, которые встречаются в эксплуатационных условиях: параметры состояния и структурные характеристики, определяю? щие технические свойства: химический, минеральный и фазовый состав; удельные характеристики массы (плотность и объемная масса) и пористость; дисперсность порошкообразных материалов;

физические свойства: реологические свойства пластично-вязких материалов; свойства гидрофизические, теплофизические, акустические, электрические, определяющие отношение материала к различным физическим процессам; стойкость против физической коррозии (морозостойкость, радиационная стойкость, водостойкость);

механические свойства, определяющие отношение материала к деформирующему и разрушающему действию механических нагрузок (прочность, твердость, упругость, пластичность, хрупкость и др.);

химические свойства: способность к химическим превращениям, стойкость против химической коррозии; долговечность и надежность.

Свойства материалов оценивают числовыми показателями, устанавливаемыми путем испытаний в соответствии со стандартами, В СССР создана единая государственная система стандартизации, которая позволяет применять стандартизацию во всех отраслях народного хозяйства. Тем самым обеспечивается эффективность действия стандартов как одного из средств ускорения научно-технического прогресса и повышения качества продукции.

Система органов и служб стандартизации представлена общесоюзным органом по стандартизации (Государственный комитет стандартов Совета Министров СССР) и его службами - службой стандартизации в отраслях народного хозяйства, службой стандартизации в союзных республиках. В зависимости от сферы действия стандарты делят на четыре категории: государственные (ГОСТ), отраслевые (ОСТ), республиканские (РСТ) и стандарты предприятий (СТП).

Государственные стандарты - это обязательный документ для всех предприятий, организаций и учреждений, независимо от их ведомственной подчиненности, во всех отраслях народного хозяйства СССР и союзных республик. В соответствии с постановлением Совета Министров СССР их утверждает Госстандарт, а стандарты в области строительства и строительных материалов - Государственный комитет СССР по делам строительства (Госстрой СССР), Особо важные государственные стандарты (по специальному переч-ню) утверждает Совет Министров СССР.

В области строительных материалов и изделий наиболее распространены стандарты: технических условий; технических требований; типов изделий и их основных параметров, методов испытаний; правил приемки, маркировки, упаковки, транспортирования и хранения.

Стандарты технических требований нормируют показатели качества, надежности и долговечности продукции, ее внешний вид. Вместе с тем такие стандарты устанавливают гарантийный срок службы и комплектность поставки изделий. Большинство стандартов на строительные материалы и изделия - это стандарты технических требований. Значительная часть требований в стандартах связана с физико-механическими характеристиками материалов (объемной массой, водопоглощением, влажностью, прочностью, морозостойкостью) .

Одна из особенностей государственной системы стандартизации в строительстве и технологии строительных изделий состоит в том, что кроме стандартов здесь действует система нормативных документов, объединенная в Строительные нормы и правила (СНиП). СНиП - это свод общесоюзных нормативных документов по проектированию, строительству и строительным материалам, обязательный для всех организаций и предприятий.

Методическую основу стандартизации размеров в проектировании, изготовлении строительных изделий и при возведении сооружений составляет Единая модульная система (ЕМС). Эта система представляет собой совокупность правил координации размеров элементов зданий и сооружений, строительных изделий и оборудования на базе основного модуля, равного 100 мм (обозначается 1М). Применение ЕМС позволяет унифицировать и сократить число типоразмеров строительных изделий. Это обеспечивает взаимозаменяемость деталей, выполненных из разных материалов или отличающихся по конструкции. Изделия и детали одинаковых типоразмеров, изготовленные в соответствии с требованиями ЕМС, могут быть использованы в зданиях разнообразного назначения.

В Единую модульную систему входят и производные модули, которые получают путем умножения основного модуля на целые или дробные коэффициенты. При умножении на целые коэффициенты образуются укрупненные модули, а при умножении на коэффициенты менее единицы - дробные модули (табл. 2).

Таблица-2. Размеры модулей в ЕМС


Производные укрупненные модули (60М, 30М, 12М) и кратные им размеры рекомендуется применять для назначения продольных и поперечных шагов зданий. Модули 6М, 3М, 2М предназначены для членения конструктивных элементов в плане зданий, назначения

ширины проемов. Основной модуль 1М и дробные модули от 1/2М до 1/20М применяют для назначения размеров сечения относительно малых элементов (колонн, балок и т. д.). Наиболее мелкие дробные модули (от 1/10М до 1/100М) используют для назначения толщин плитных и листовых материалов, ширины зазоров, допусков.

Созданные в СССР Строительные нормы и правила имеют большое международное значение. Решением Постоянной комиссии СЭВ по строительству СНиП взят за основу унифицированных норм и правил в области строительства для всех стран - членов СЭВ.

Работы по стандартизации в интернациональном масштабе проводятся специально созданной в 1947 г. Международной организацией по стандартизации (ИСО). Деятельность ИСО, как указано в ее уставе, имеет целью содействовать благоприятному развитию стандартизации во всем мире для того, чтобы облегчить международный обмен товарами и развивать взаимное сотрудничество в области научной, технической и экономической деятельности. Кроме ИСО активную работу в области международной стандартизации и социалистической экономической интеграции проводят Совет Экономической Взаимопомощи и его Международный институт по стандартизации.

Связь строения и свойств

Знание строения строительного материала необходимо для понимания его свойств и в конечном итоге для решения практического вопроса, где и как применить материал, чтобы получить наибольший технико-экономический эффект.

Строение материала изучают на трех уровнях: 1) макроструктура материала - строение, видимое невооруженным глазом; 2) микроструктура материала - строение, видимое в оптический микроскоп; 3) внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне, изучаемом методами рентгеноструктурного анализа, электронной микроскопии и т. п.

Макроструктура твердых строительных материалов*может быть следующих типов: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, рыхлозернистая (порошкообразная). *Примечание: природные каменные материалы сюда не относятся, так как горные породы имеют собственную геологическую коассификацию.

Искусственные конгломераты - это обширная группа, объединяющая бетоны различного вида, ряд керамических и других материалов.

Ячеистая структура характеризуется наличием макропор, свойственных газо- и пенобетонам, ячеистым пластмассам.

Мелкопористая структура свойственна, например, керамическим материалам, поризованным способами высокого водозатворения и введением выгорающих добавок.

Волокнистая структура присуща древесине, стеклопластикам, изделиям из минеральной ваты и др. Ее особенностью является резкое различие прочности, теплопроводности и других свойств вдоль и поперек волокон.

Слоистая структура отчетливо выражена у рулонных, листовых, плитных материалов, в частности у пластмасс со слоистым наполнителем (бумопласта, текстолита и др.).

Рыхлозернистые материалы - это заполнители для бетона, зернистые и порошкообразные материалы для мастичной теплоизоляции, засыпок и др.

Микроструктура веществ , составляющих материал, может быть кристаллическая и аморфная. Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезема. Кристаллическая форма всегда более устойчива.

Чтобы вызвать химическое взаимодействие между кварцевым песком и известью, в технологии силикатного кирпича применяют автоклавную обработку отформованного сырца насыщенным водяным паром с температурой не менее 175°С и давлением 0,8 МПа. Между тем трепел (аморфная форма двуокиси кремния) вместе с известью после затворения водой образует гидросиликат кальция при нормальной температуре 15 - 25°С. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.

Практическое значение для природных и искусственных каменных материалов имеет явление полиморфизма - когда одно и то же вещество способно существовать в различных кристаллических формах, называемых модификациями. Наблюдаются, например, полиморфные превращения кварца, сопровождающегося изменением объема.

Особенностью кристаллического вещества является определенная температура плавления (при постоянном давлении) и определенная геометрическая форма кристаллов каждой его модификации.

Свойства монокристаллов неодинаковы в разных направлениях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность и др. Явление анизотропии является следствием особенностей внутреннего строения кристаллов.

В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы беспорядочно. Подобные материалы рассматриваются как изотропные по своим строительно-техническим свойствам. Исключение составляют слоистые каменные материалы (гнейсы, сланцы и др.).

Внутреннее строение веществ, составляющих материал, определяет механическую прочность, твердость, тугоплавкость и другие важные свойства материала.

Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе, или разных элементов, как в SiO2); ионами (разноименно заряженными, как в СаС03, или одноименными, как в металлах); целыми молекулами (кристаллы льда).

Ковалентная связь, осуществляемая обычно электронной парой, образуется в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, карборунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.

Ионные связи образуются в кристаллах тех материалов, в которых связь имеет преобладающе ионный характер. Распространенные строительные материалы этого типа гипс и ангидрид имеют невысокую прочность и твердость, не водостойки.

В сложных кристаллах, часто встречающихся в строительных материалах (кальцит, полевые шпаты), осуществляются и ковалентная, и ионная связи. Внутри сложного иона С03-2 связь ковалентная, но сам он имеет с ионами Са+2 ионную связь. Свойства подобных материалов весьма разнообразны. Кальцит СаСОз при достаточно высокой прочности обладает малой твердостью. У полевых шпатов сочетаются довольно высокие показатели прочности и твердости, хотя и уступающие кристаллам алмаза с чисто ковалентной связью.

Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен из целых молекул, которые удерживаются друг около друга сравнительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.

Силикаты, занимающие особое место в строительных материалах, имеют сложную структуру, обусловившую их особенности. Так, волокнистые минералы (асбест) состоят из параллельных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические воздействия, недостаточные для разрыва цепей, разделяют такой материал на волокна. Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки.

Сложные силикатные структуры построены из тетраэдров Si04, связанных между собой общими вершинами (общими атомами кислорода) и образующих объемную решетку. Это дало основание рассматривать их как неорганические полимеры.

Связь состава и свойств

Строительный материал характеризуется химическим, минеральным и фазовым составом.

Химический состав строительныхпор, т. е. «каркас» материала, и поры, заполненные воздухом и водой. Если вода, являющаяся компонентом этой системы, замерзает, то образовавшийся в порах лед изменяет механические и теплотехнические материалов позволяет судить о ряде свойств материала: огнестойкости, биостойкости, механических и других технических характеристиках. Химический состав неорганических вяжущих веществ (цемента, извести и др.) и каменных материалов удобно выражать количеством содержащихся в них окислов (в %). Основные и кислотные окислы химически связаны между собой и образуют минералы, которые и определяют многие свойства материала.

Минеральный состав показывает, какие минералы и в каком количестве содержатся в вяжущем веществе или в каменном материале. Например, в портландцементе содержание трехкальциевого силиката (3CaO-Si02) составляет 45 - 60%, причем при большем его количестве ускоряется твердение, повышается прочность цементного камня.

Фазовый состав материала и фазовые переходы воды, находящейся в его порах, оказывают влияние на все свойства и поведение материала при эксплуатации. В материале выделяют твердые вещества, образующие стенки свойства материала. Увеличение же объема замерзающей в порах воды вызывает внутренние напряжения, способные разрушить материал при повторных циклах замораживания и оттаивания.

С характеристиками структуры связаны показатели всех свойств материалов. Различают три уровня строения материала: макроструктура - строение, видимое невооруженным глазом, микроструктура - ви­димое в оптический микроскоп и внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне.

К основным видам макроструктуры относят конгломератную, ячеистую, во­локнистую, слоистую, рыхлозернистую (порошкообразную).

Изучая микроструктуру материалов, выделяют кристаллические и аморфные.

Подавляющее большинство современных материалов, кроме жестко-вязкого (твердого) вещества, содержат в своей структуре поры - промежутки, полости, ячейки. Их количество и характер (размеры, распределение, открытые они или закрытые) влияют на другие эксплуатационно-технические свойства. Поэтому пористость - важная характеристика материала.

Физические свойства материалов:

Свойства материалов при действии влаги, воды, замораживания-оттаива­ния.

Влажность - содержание влаги в материале, отнесенное к массе материала в сухом состоянии, измеряемое в процентах.

Гигроскопичность - способность материала поглощать водяные пары из воз­духа (при его повышенной влажности) и удерживать их вследствие капилляр­ной конденсации.

Водопоглощение - способность материала при непосредственном контакте с водой впитывать ее и удерживать. Водопоглощение материала, как правило, меньше его пористости, так как поры бывают закрытыми или очень мелкими, и вода в них не проникает.

Водопроницаемость - способность материала пропускать воду под давлени­ем. Величина водопроницаемости характеризуется количеством воды, прошед­шей в течение 1 ч через 1 см 2 площади испытуемого материала при постоянном давлении.

Для специальных областей строительства (например, для строительства дре­нажных систем) может потребоваться материал, обладающий заданной степенью водопроницаемости. В большинстве же случаев используют материалы, которые обеспечивают элементам конструкции водонепроницаемость. Особо важна водо­непроницаемость для гидроизоляционных и кровельных материалов.

Увеличение влажности многих материалов сказывается отрицательно на их физико-механических характеристиках. Ряд материалов (древесина, бетон и др.) увеличивают свой объем при увлажнении, а при последующем высыхании дают усадку. Систематическое увлажнение и высыхание может вызвать знакоперемен­ные напряжения в материале и со временем привести к потере его прочности и разрушению. Насыщение материала водой приводит к заметному ухудшению его теплофизических характеристик, что особо нежелательно для материалов ограж­дающих конструкций, а также снижению его прочности и долговечности.

Морозостойкость - способность насыщенного водой материала выдерживать попеременное замораживание и оттаивание без признаков разрушения и, соот­ветственно, без значительных потерь массы и прочности. Морозостойкими считают те материалы, которые после заданного количества циклов замораживания и оттаивания не имеют выкрашиваний, трещин, рассла­ивания и теряют не более допускаемого % прочности и массы по сравнению с аналогичными образцами, не подвергавшимися испытанию.

Свойства при действии тепла, огня, звука.

Способность материала передавать через свою толщу тепловой поток, возникающий при разности температур на поверхностях, ограничивающих материал, называется теплопроводностью.

Огнестойкость – способность материалов сохранять физико-механические свойства при воздействии огня и высоких температур в условиях пожара. Огнестойкость материалов и изделий определяют по степени возгораемости при помощи методов огневой трубы и калометрии.

Звукопоглащение – способность материалов поглощать звуковые волны.

Химические свойства:

Свойства при действии агрессивных веществ.

Коррозионная стойкость способность материалов сопротивляться действию агрессивных веществ. Послед­ние могут разрушать вещество материала и его структуру. Кислотостойкость, щелочестойкость и пр.

Механические свойства:

Свойства при действии статических и динамических сил.

Прочность - спо­собность материалов сопротивляться разрушению или необратимому изменению формы под действием внутренних напряжений, вызванных внешними силами или другими факторами.

Твердость - способность материала сопротивляться внутренним напряжени­ям, возникающим при местном внедрении другого, более твердого тела.

Истираемость - способность материала уменьшаться в объеме и массе вследствие разрушения поверхностного слоя под действием истирающих усилий.

Упругость - способность материала деформироваться под влиянием нагрузки и самопроизвольно восстанавливать первоначальную форму и размеры после пре­кращения действия внешней среды. Упругая деформация полностью исчезает пос­ле прекращения действия нагрузки, поэтому ее принято называть обратимой.

Пластичность- способность материала изменять форму и размеры под действием внешних сил, не разрушаясь. После прекращения действия силы ма­териал не может самопроизвольно восстановить форму и размеры. Остаточная деформация называется пластической.

Хрупкость способность твердого материала разрушаться при механических воздействиях без сколько-нибудь значительной пластической деформации.


Древесные материалы.

Дерево как строительный материал обладает такими положительными качествами, как небольшой объемный вес, высокая прочность, (особенно при растяжении), малая теплопроводность(можно использовать для теплоизоляции помещений), экологичность, легкость обработки, эстетические качества.

Вместе с тем, такие серьезные недостатки дерева, как анизотропность (то есть материал с неодинаковыми свойствами по направлениям относительно волокон. (Так, например, усушка вдоль волокон меньше, чем поперёк волокон), гигроскопичность, загниваемость, разбухание, коробление при неравномерной сушке, растрескивание, высокая звукопроницаемость, горючесть, наличие пороков ограничивают сроки его службы и сферу применения.

Древесина служит исходным сырьем для выработки более двадцати тысяч продуктов и изделий. Способы переработки древесного сырья делят на три группы: механические, химико-механические и химические.

Механическая переработка древесины заключается в изменении её формы пилением, строганием, фрезерованием, лущением и тд. В результате механической обработки получают разнообразные товары народного потребления и промышленного назначения, продукцию и сырье для смежных перерабатывающих отраслей промышленности. При химико-механической переработке получают промежуточный продукт из древесины, однородный по составу и размерам, - специально резаную стружку, дробленый шпон. Промежуточный продукт, получаемый механическим способом, покрывают связующим веществом. Под действием температуры и давления происходит реакция полимеризации связующего, в результате чего промежуточный древесный продукт прочно склеивается. При химико-механической переработке получают фанеру, столярные, древесностружечные и цементно-стружечные плиты, арболит и фибролит. Химическая переработка древесины осуществляется термическим разложением, воздействием на неё растворителей щелочей, кислот, кислых солей сернистой кислоты.

Ценность различных пород древесины заключается в их прочности, долговечности и неповторимости рисунка. Такая древесина используется для изготовления красивой мебели, паркета, дверей, различных предметов интерьера, считающимися элитными, учитывая исходно высокую стоимость и размер усилий, затрачиваемые на её обработку.

Современная техника располагает средствами для продления срока эксплуатации дерева в конструкциях. К числу их относятся сушка, антисептирование и пропитка огнезащитными средствами.

Основными источниками экономии лесных материалов в строительстве являются максимальное использование отходов древесины для производства новых индустриальных материалов, продление сроков службы дерева и рациональное его использование в конструкциях.

Вопросы экономии древесины нужно учитывать также при обработке и переработке дерева. Здесь решающую роль играет правильный выбор организации технологического процесса и режимов обработки. Дерево широко применяют в современном строительстве как конструктивный, отделочный и теплоизоляционный материал. Для строительных конструкций применяются хвойные породы, для отделки – лиственные. Номенклатура изделий из дерева:

Древесина как строительный материал: Бревно, Брус, Доска,Рейка

Деревянные строительные конструкции: Сруб, Опалубка, Строительные леса, Ферма

Древесина как отделочный материал: Фанера,Паркет, паркетная доска, паркетный щит, Настенные панели, Деревянные потолки,Плинтусы и уголки,Деревянные окна и двери.

Весьма популярны малоэтажные жилые дома из бревен или бруса.


Материалы из природного камня. Примеры применения

Природный камень - это натуральный строительный материал. Натуральным камнем называют все горные породы, используемые в строительстве. К ним можно отнести: мрамор, гранит, туф, сланец, песчаник, известняк и оникс. Наиболее популярными на сегодняшний день являются камни: гранит, мрамор, оникс и доломит.

Гранит природный камень магматического происхождения, который состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд. Цветовая гамма: серый, красный, бордово-красный, красно-розовый, розовый, коричнево-красный, серо-зеленый, черно-зеленый с крупными прозрачными вкраплениями.

Мрамор является самым популярным и элитным камнем среди натуральных камней. Мраморные камины и лестницы сегодня являются атрибутом роскоши

Оникс является наполовину драгоценным камнем. У этого камня необычная расцветка, красивые и тонкие полоски придают необычную красоту этому камню.

Песчаник природный камень осадочного происхождения, состоящий в основном из частиц кварца. Цветовая гамма: желтые, желто-коричневые, серые, серо-зеленые природные оттенки.

Доломит природный камень осадочного происхождения, состоящий целиком из минерала доломита. Цветовая гамма: розовые, желтые природные оттенки.

Материалы из природного камня получают путем добычи и обработки горных пород. Каменные материалы по форме делят на

· камни неправильной формы (щебень, гравий)

· штучные изделия, имеющие правильную форму (плиты, блоки).

Наиболее древние сооружения, дошедшие до наших дней, были построены из природного камня.

Представления о свойствах природных каменных материалов связаны, как правило, с высокой прочностью и долговечностью. Однако природный камень - материал, весьма разнообразный по структуре, часто сложенный из различных минералов и нередко подвергающийся в процессе образования и последующего залегания в земной коре воздействию значительных напряжений. Влияние на свойства природных каменных материалов оказывают также способы его добычи и обработки. Эксплуатационно-технические свойства природных каменных материалов (как и эстетические) определяются структурой горной породы. При ее оценке учитывают непосредственную связь с составом и свойствами породообразующих минералов, отличающихся разнообразными характеристиками.

Номенклатура материалов из природного камня включает блоки, камни, плиты, архитектурно-строительные изделия (плоскостные и профильные). Среди перечисленных есть материалы специального назначения: для гидротехнических сооружений (морских и речных), подземных сооружений и мостов (тоннелей, подводных и надводных частей мостов), для дорожного строительства.

Применение. В архитектурно-строительной практике каменные материалы используют как конструкционные (блоки для фундаментов, стен), конструкционно-отделочные (плиты для пола, лестниц), отделочные (плиты, профильные изделия для наружной и внутренней облицовки).

В зависимости от областей применения декоративно-облицовочные камни подразделяются на три группы:

Камни, не несущие значительных механических нагрузок (плиты, применяемые для внешней и внутренней облицовки зданий);

Камни, предназначенные для больших механических нагрузок (плиты для полов, ступени и др.);

Камни, идущие для сооружения монументальных памятников и крупных декоративных архитектурных деталей (колонны, пилоны и т. д.).

Блоки из природного камня для фундаментов и кладки наружных стен применяются, как местный строительный материал для двух-, трех- и пятиэтажных жилых, общественных и промышленных зданий.

Необходима защита от коррозии. Для отделки зданий применяется полированный и шлифованный камень. Можно применять гидрофобные растворы с предварительной очисткой от грязи и пыли.


Керамические материалы. Примеры их применения.

Керамические материалы обладают поликристаллической структурой, их получают в результате формования и тепловой обработки глин с добавками. Основным сырьевым компонентом является глина – осадочная горная порода.

Основные этапы производства (получения): Подготовка сырья – дозировка – перемешивание – формование (пластическое, полусухое, литье) – сушка – обжиг. Обработка лицевой поверхности: Механическая (для получения рельефного рисунка), ангобирование (для матового покрытия), глазурование (стекловидный слой, для блеска), сериография (изготовление по трафарету рисунка красящим составом), шелкография (нанесение орнамента-рельефа, глубиной до 1мм). Наряду с древесными и материалами из природного камня керамические материалы применялись в еще глубокой древности.

Среди керамических материалов, выпускаемых промышленностью, - стеновые (кирпичи, камни, блоки), плитки и плиты, черепица, санитарно-технические, архитектурно-художественные, а также изделия специального назначения: трубы, дорожный кирпич, кислотно- и огнеупорные, теплоизоляционные, краски. Свойства: Эксплуатационно-технические: Водопоглощение, морозостойкость, теплопроводность, термостойкость, прочность. Однако недостатком их является хрупкость

Эстетические: связаны с видом и составом используемого сырья. Цвет, рельеф, блеск, просвечиваемость.

По назначению строительные керамические материалы и изделия классифицируются на: стеновые материалы, пустотелые изделия для перекрытий, облицовочные материалы для наружной и внутренней отделки зданий, кровельные материалы, трубы, огнеупорные материалы, заполнители для легких бетонов, санитарно-технические изделия, специальные изделия.

К конструкционным и конструкционно-отделочным керамическим материалам относятся, прежде всего, кирпичи, камни и блоки.

Применение:

Керамический кирпич – один из самых распространенных материалов. Из кирпича возводятся около половины всех жилых, общественных и строительных зданий. Кирпич глиняный обыкновенный пластического прессования изготавливают из глин с отощающими добавками или без них. Кирпич представляет собой параллелепипед. Марки кирпича: 300, 250, 200, 150, 125, 100. Кирпич (камень) керамический пустотелый пластического прессования выпускают для кладки несущих стен одноэтажных и многоэтажных зданий, внутренних помещений, стен и перегородок, облицовки кирпичных стен.

Много примеров применения кирпича керамического в интерьерах общественных зданий. Кирпич строительный лёгкий изготовляют путём формовки и обжига массы из глин с выгорающими добавками, а также из смесей песка и глин с выгорающими добавками. Размер кирпича: 250×120×88 мм, марки 100, 75, 50, 35. Кирпич глиняный обыкновенный применяют при кладке внутренних и наружных стен, столбов и других частей зданий и сооружений. Кирпич глиняный и керамический пустотелые применяют при кладке внутренних и наружных стен зданий и сооружений выше гидроизоляционного слоя. Кирпич лёгкий применяют при кладке наружных и внутренних стен зданий с нормальной влажностью внутри помещений.

Еще один распространенный керамический материал – черепица. Черепицу изготовляют из жирной глины путём обжига при 1000-1100 °C. Доброкачественная черепица при лёгком ударе молотком издаёт чистый, не дребезжащий звук. Она прочна, очень долговечна и огнестойка. Недостатки - большая средняя плотность, утяжеляющая несущую конструкцию крыши, хрупкость, необходимость устраивать крыши с большим уклоном для обеспечения быстрого стока воды. Широко применяют в странах Западной Европы керамическую черепицу для кровельных покрытий малоэтажных зданий, отдавая дань архитектурной выразительности этого материала и его высокой долговечности.

Дренажные керамические трубы изготавливают из глин с отощающими добавками или без них, внутренний диаметр 25-250 мм, длиной 333, 500, 1000 мм и толщиной стенок 8-24 мм. Их изготавливают на кирпичных ил специальных заводах. Дренажные керамические трубы применяют при строительстве осушительно-увлажнительных и оросительных систем, коллекторно-дренажных водоводов. Керамические плитки, плиты, используют для облицовки фасадов зданий, как правило, общественных и административных. Часто предпочитают плиты сравнительно крупных размеров.

Значительные объемы применения керамических плиток, плит, для внутренней облицовки стен ванных комнат, туалетов, бассейнов. В упомянутых помещениях эти керамические изделия применяют и для покрытия плов.

Большое значение в современной лаконичной архитектуре имеет применение декоративно-художественной керамики для настенных панно, декоративных вставок, объемных композиций, решеток, элементов малых форм.


Материалы из стеклянных и других минеральных расплавов. Примеры их применения.

Минеральные (не металлические расплавы) представляют собой огненно-жидкие вязкие массы природного сырья и промышленные шлаки.

В зависимости от исходного сырья различают:

Стеклянные, кварцевые породы

Каменные (из магматических и горных пород)

Шлаковые (промышленные шлаки)

Стекло - переохлаждённый расплав сложного состава из смеси силикатов и других веществ. Отформованные стеклянные изделия подвергают специальной термической обработки - обжигу.

Материалы из стекла имеют искусственную аморфную структуру, получаемую из минерального расплава, содержащего стеклообразующие компоненты (оксиды кремния, бора, алюминия и др.). Кроме материалов из стекла выделяют материалы из каменных и шлаковых расплавов.

Эксплуатационно-технические свойства материалов из стекла зависят, прежде всего, от его состава и структуры, которая отличается отсутствием правильной пространственной решетки и изопрочностью.

Материалы из стекла и других минеральных расплавов можно разделить на две основные группы: светопрозрачные и непрозрачные (облицовочные, специального назначения: теплоизоляционные, звукопоглощающие, кислотоупорные).

Наиболее распространено в строительстве оконное стекло - бесцветное с гладкими поверхностями. Оконное стекло выпускают в листах размером от 2500х2500 до 3210×6000 мм. Оно имеет светопропускание 84...90 %. Стекло в соответствии с его оптическими искажениями и нормируемыми пороками подразделяют на марки М0-М7.По толщине стекло делят на:одинарное (толщиной 2 мм), полуторное (2,5 мм),двойное (3 мм), утолщённое (4-10) мм

Витринное стекло выпускают полированным и неполированным в виде плоских листов толщиной 2-12 мм. Применяют его для остекления витрин и проёмов. В дальнейшем листы стекла можно подвергать дальнейшей обработке: гнуть, закалять, наносить покрытия.

Стекло листовое высокоотражающее - это обычное оконное стекло, на поверхность которого нанесена тонкая полупрозрачная отражающая свет плёнка, изготовленная на основе окиси титана. Стекло с плёнкой отражает до 40 % падающего света, светопропускание 50-50 %. Стекло уменьшает просмотр с наружной стороны и снижает проникание внутрь помещения солнечной радиации.

Стекло листовое радиозащитное - это обычное оконное стекло, на поверхность которого нанесена тонкая прозрачная экранирующая плёнка. Экранирующую плёнку наносят на стекло в процессе его формирования на машинах. Светопропускание не ниже 70 %.

Армированное стекло - изготавливают на поточных линиях методом непрерывного проката с одновременным закатыванием внутрь листа металлической сетки. Это стекло имеет гладкую, узорчатую поверхность, может быть бесцветным или цветным.

Стекло теплопоглощающее обладает способностью поглощать инфракрасные лучи солнечного спектра. Оно предназначено для остекления оконных проёмов с целью уменьшения проникания солнечной радиации внутрь помещений. Это стекло пропускает лучи видимого света не менее чем на 65 %, инфракрасных лучей не более 35 %.

Стеклянные трубы изготавливают из обычного прозрачного стекла способом вертикального или горизонтального вытягивания. Длина труб 1000-3000 мм, внутренний диаметр 38-200 мм. Трубы выдерживают гидравлическое давление до 2 МПа.

Ситаллы получают путём введения в расплавленную стеклянную массу специального состава катализаторов кристаллизации. Из такого расплава формируют изделия, затем их охлаждают, в результате чего расплавленная масса превращается в стекло. При последующей тепловой обработке стекла происходит его полная или частичная кристаллизация - образуется ситолл. Они имеют большую прочность, малую среднюю плотность, высокую износостойкость. Их применяют при облицовке наружных или внутренних стен, изготовления труб, плит для полов.

Стемалит представляет листовое стекло различной фактуры, покрытое с одной стороны глухими керамическими кристаллами разного цвета. Изготавливают его из неполированного витринного или прокатного стекла толщиной 6-12 мм. Применяют его для наружной и внутренней облицовки зданий, изготовления стеновых панелей.

Марблит - прямоугольные или квадратные плиты, изготовленные из цветного глушеного стекла. Наружная поверхность плит обычно полированная, внутренняя - рифленая. Стекломрамор имеет мраморовидную окраску и является разновидностью марблита. Марблит применяется для облицовки фасадов и внутри зданий.

Смальтой называют кусочки цветного глушеного стекла неправильной формы и наибольшим размером (20 мм). Ее отливают в виде плит, которые затем разбивают на кусочки. Применяют смальту для отделки фасадов, изготовления Полированное строительное стекло обладает самыми минимальными оптическими искажениями, что делает его мдеально подходящим для применения в оконных технологиях, для остекления витрин, устройства ветражей, производства зеркал и

Примеры. Архитектурный образ современного здания, сооружения в большей мере определяется структурой современных элементов, выявляющихся на фасаде, и плоскостями из стекла. Характерны геометрически четкие формы и значительные площади стекла с оригинальными свойствами.

Глухие участки навесных стен, влияющие на архитектурный образ зданий, могут быть расположены выше перекрытий или в пределах их примыкания. Но часто предусматривается полное остекление упомянутых стен.

Здания с ограждениями из стеклянных материалов могут иметь гладкий фасад или фасад с развитой пластикой – выступами, углублениями.

Соотношения светопрозрачных и глухих участков фасада, пропорции членения, цвет стекла – те параметры, которые позволяют создавать навесные стены с разнообразным внешним обликом. Оригинальный внешний вид фасада получают, сочетая светопрозрачные и светонепрозрачные материалы из стекла.

Не менее значимы, в т.ч. для архитектурного облика, материалы из стекла в зданиях жилого, промышленного назначения, детских садах, школах, вузах.

Принципиальное значение имеет тот факт, что материалы из стекла остаются экологически чистыми на протяжении всего срока их эксплуатации.

Область применения:

Архитектура (отделка фасадов), интерьеры (перегородки, двери, стены).остекления световых проемов (листовое оконное, витринное, закаленное, армированное и др.), как отделочный материал (цветные листы, крупные и мелкие плитки), а из стеклянного волокна получают стеклопластики и стекловолокнистые теплоизоляционные изделия. Штучные стеклянные изделия (стеклянные пустотелые блоки и стеклопрофилит) используют для устройства светопрозрачных ограждающих конструкций.


Металлические материалы. Примеры их применения.

Основы производства: основной сырьевой компонент для получения ме. – рудные горные породы. Наиболее часто для производства ме. используют красный, магнитный бурый и шпатовый железняк. Основные технологические операции при изготовлении ме-их материалов: обработка сырья (дробление, промывка, обогащение железных руд) – дозировка – плавка (получение металлов) – формование (получение ме. материалов). При необходимости применяют механические и хим. способы отделки, лаки, краски, наносят тонкие ме-кие или полимерные пленки.

Ме., применяемые для производства строительных ма., разделяют на 2 группы:

Черные – сплав железа с углеродом - чугун и сталь.На долю черных ме приходится около 95 % производимой в мире металлопродукции.

ЛАБОРАТОРНАЯ РАБОТА № 1

ОБЩИЕ ТЕХНИЧЕСКИЕ СВОЙСТВА

СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

ОБЩИЕ ТЕХНИЧЕСКИЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

К основным техническим свойствам всех строительных материалов относятся: масса, плотность, пористость, прочность, водопоглощение, морозостойкость. Они служат как для оценки качества и особенностей применения материалов, так и для различных технико-экономических расчетов.

Некоторые же свойства являются специальными и важны при выборе материала лишь для некоторых условий эксплуатации (водостойкость, химическая стойкость, теплопроводность и др.)

Основные свойства строительных материалов определяют на стандартных образцах в соответствии с ГОСТ, соблюдая следующие условия:

– Массу образцов определяют с погрешностью не более 0,1%.

– Размеры образцов правильной геометрической формы определяют с погрешностью не более 1 мм.

– Объем образцов неправильной геометрической формы определяют с погрешностью не более 1%.

– Температура воздуха в помещении, в котором проводят испытания образцов, должна быть (25±10)°С, а относительная влажность воздуха - не менее 60%.

Масса – совокупность материальных частиц (атомов, молекул, ионов), содержащихся в данном теле. Масса обладает определенным объемом, т.е. занимает часть пространства. Она постоянна для данного вещества и не зависит от скорости его движения и положения в пространстве. Тела одинакового объема, состоящие из различных веществ, имеют неодинаковую массу. Для характеристики различий в массе веществ, имеющих одинаковый объем, введено понятие истинной и средней плотности.

Истинная плотность – масса единицы объема вещества материала в абсолютно плотном состоянии, т.е. без пор и пустот. Простейшими приборами, при помощи которых определяют истинную плотность, являются объемомер Ле-Шателье (см. рис. 1) и пикнометр.

Рис. 1. Объемомер Ле-Шателье

Для подготовки пробы отбирают навеску материала массой не менее 30 г и измельчают ее до полного прохождения через сито с сеткой № 02. Измельчение проводится с целью ликвидации пористости. Приготовленную порошкообразную пробу материала образцов высушивают до постоянной массы при температуре 105–110°С. Затем пробу охлаждают до температуры помещения в эксикаторе, чтобы избежать поглощение влаги из воздуха.

Определение истинной плотности проводят параллельно на двух навесках массой около 10 г каждая, отобранных от пробы. Отобранную навеску высыпают в чистый, высушенный и предварительно взвешенный пикнометр. Пикнометр взвешивают вместе с испытываемым порошком, затем наливают в него воду (или другую инертную жидкость) в таком количестве, чтобы он был заполнен приблизительно до половины объема.


Для удаления воздуха из материала навески и жидкости пикнометр с содержимым выдерживают под вакуумом в эксикаторе до прекращения выделения пузырьков. Допускается (при использовании в качестве жидкости воды) удалять воздух кипячением пикнометра с содержимым в течение 15-20 мин в слегка наклонном состоянии на песчаной или водяной бане.

После удаления воздуха пикнометр заполняют жидкостью до метки. Пикнометр помещают в термостат с температурой (20,0±0,5)°С, в котором выдерживают не менее 15 мин. После выдержки в термостате уровень жидкости доводят до метки по нижнему мениску. После достижения постоянного уровня жидкости пикнометр взвешивают. После взвешивания пикнометр освобождают от содержимого, промывают, заполняют той же жидкостью, удаляют из нее воздух, выдерживают в термостате, доводят жидкость до постоянного уровня и снова взвешивают.

Истинную плотность () материала навески в г/см 3 вычисляют по формуле

где масса пикнометра с навеской, г;

Масса пикнометра, г;

Плотность жидкости, г/куб.см;

Масса пикнометра с жидкостью, г;

Масса пикнометра с навеской и жидкостью, г.

За значение истинной плотности изделий принимают среднее арифметическое результатов определений истинной плотности материала двух навесок, рассчитанное с точностью до 0,01 г/см 3 . Расхождение между результатами параллельных определений не должно быть более 0,02 г/см 3 . При больших расхождениях истинную плотность изделий определяют снова.

Средняя плотность – отношение массы образца материала ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты. Среднюю плотность вычисляют по формуле

где масса материала, кг;

Объем материала в естественном состоянии, м 3 ;

Объем образцов правильной геометрической формы вычисляют по их геометрическим размерам. Если образец имеет форму куба или параллелепипеда, то измеряют его длину, ширину и высоту, причем каждую грань измеряют в трех местах и вычисляют среднее арифметическое значение. При определении объема образца цилиндрической формы на каждом из двух параллельных оснований цилиндра проводят два взаимно перпендикулярных диаметра и измеряют их, кроме того, определяют диаметр цилиндра во взаимно перпендикулярном направлении по середине высоты цилиндра. В точках пересечения отрезков диаметров с окружностью оснований измеряют высоту цилиндра. Диаметр цилиндра вычисляют как среднее арифметическое значение из шести указанных измерений. Высоту цилиндра определяют аналогично, исходя из четырех имеющихся измерений.

Объем образцов неправильной геометрической формы определяют с по­мощью объемомера или гидростатическим взвешиванием. Объемомер представляет собой сосуд произвольной формы (рис. 2), величина которого позволяет испытать имеющиеся образцы. В сосуд впаяна трубка внутренним диаметром 8–10 мм с загнутым концом. Объемомер наполняют водой температурой (20±2) °С до тех пор, пока она не потечет из трубки. Когда из трубки прекратится падение капель, под нее ставят предварительно взвешенную емкость. Образец, подготовленный к испытаниям, осторожно погружают на тон­кой проволоке или нити в объемомер, при этом вода, вытесненная образцом, через трубку вытекает в емкость. После прекращения падения капель емкость с водой взвешивают и определяют массу и объем вытесненной воды V В в см 3 по формуле

где т 1 масса пустой емкости, г:

т 2 масса емкости с водой, вытесненной образцом, г;

r В – плотность воды, принимаемая равной 1,0 г/см 3 .

1 - сосуд; 2 - трубка; 3 - емкость для сбора воды

Рис. 2. Объемомер.

Объем образца на гидростатических весах определяют взвешиванием его на воздухе и в воде в соответствии со схемой, приведенной на рис. 3.

1 – сосуд с водой; 2 – подвес для образца; 3 – образец; 4 – весы;

5 – разновес

Рис. 3. Гидростатические весы.

Точность определения средней плотности зависит от пористости материала, так как образец, погруженный в жидкость, не только вытесняет, но и впитывает ее. Образцы, имеющие мелкопористую структуру, перед испытанием парафини­руют или насыщают водой не менее суток.

Объем предварительно насыщенных водой образцов V 0 в см 3 определяют:

где – масса насыщенного водой образца, определенная взвешиванием в воздухе, г;

– масса насыщенного водой образца, определеннаявзвешиванием в воде, г;

– плотность воды, принимаемая равной 1 г/см 3 .

Парафинирование производят следующим образом. Образец, высушенный до постоянной массы, нагревают до 60 °С и несколько раз погружают в расплав­ленный парафин с таким расчетом, чтобы на его поверхности образовалась пленка парафина толщиной около 1 мм. После этого образец взвешивают.

Объем образцов, подготовленных к испытанию парафинированием, определяют:

– при испытании в объемомере по формуле

– при испытании на гидростатических весах по формуле

где

масса парафинированного образца, определенная взвешиванием в воздухе, г;

масса парафинированного образца, определенная взвешиванием в воде, г;

– плотность парафина, принимаемая равной 0,93 г/см 3 .

Величину средней плотности определяют не менее чем на трех образцах. Окончательным результатом является среднее арифметическое значение средней плотности из трех замеров.

Насыпная плотность – характерна для сыпучих материалов (цемент, песок, щебень, гравий и др.). В этом случае в объем материала включают не только поры в самом материале, но и пустоты между зернами или кусками материала.

Насыпную плотность сыпучих материалов определяют путем взвешивания некоторого объема материала. Для установления насыпной плотности мелкозернистых материалов пользуются сосудом объемом 1 литр. Для крупнозернистых материалов используют цилиндрические сосуды объемом от 5 до 50 литров.

Определение производят следующим образом. Из специальной воронки или при помощи совка насыпают материал в предварительно взвешенный сосуд с небольшим избытком, который затем снимают металлической линейкой вровень с краями сосуда. После этого сосуд, заполненный материалом, взвешивают. Насыпную плотность определяют по формуле:

где т – масса мерного сосуда, г;

т 1 – масса мерного сосуда с песком, г;

V – объем мерного сосуда, см 3 .

Пористость материала () характеризуется степенью заполнения его объема порами и вычисляется в процентах по объему по следующей формуле:

где – средняя плотность песка, кг/м 3 ;

– истинная плотность песка, кг/м 3 ;

Пустотность – (объем межзерновых пустот) сыпучих материалов в стандартном неуплотненном состоянии определяют на основании значений истинной плотности и насыпной плотности. Пустотность () в процентах по объему вычисляют по формуле

где – истинная плотность песка, кг/м 3 ;

– насыпная плотность песка, кг/м 3 .

Водопоглощение – это свойство материала впитывать и удерживать в себе воду при непосредственном соприкосновении с ней. Водопоглощение зависит от наличия в материале открытых пор.

Водопоглощение можно определить тремя методами: 1) постоянным погружением испытуемого образца в воду; 2) кипячением образца с водой; 3) вакуумированием.

Порядок определения водопоглощения по первому методу следующий. Предварительно высушенные при температуре 110ºС и взвешенные образцы помещают в емкость, наполненную водой с таким расчетом, чтобы уровень воды в емкости был выше верхнего уровня уложенных образцов примерно на 50 мм. Образцы укладывают так, чтобы высота образ­ца была минимальной (призмы и цилиндры укладывают на бок). Температура воды в емкости должна быть (20 ± 2) °С. Образцы взвешивают через каждые 24 ч водопоглощения с погрешностью не более 0,1 %. При взвешивании образцы, вынутые из воды, предварительно вытирают отжатой влажной тканью. Мас­су воды, вытекшую из пор образца на чашку весов, следует вклю­чать в массу насыщенного образца. Испытание проводят до тех пор, пока результаты двух последовательных взвешиваний будут отличаться не более чем на 0,1 %.

При определении водопоглощения путем кипячения образцов (второй метод ) образцы подготавливают и укладывают в сосуд с водой аналогично первому методу, нагревают и доводят до кипения (примерно 1 час), кипятят приблизительно 5 часов и оставляют остывать до температуры помещения. После этого образцы взвешивают в порядке, указанном выше.

Вакуумирование образцов (третий метод ) производят следующим образом. Подготовленные бразцы укладывают в вакуумный эксикатор (емкость) на подставку и заливают водой так, чтобы ее уровень был выше верха образца не менее чем на 2 см. Эксикатор закрывают крышкой и вакуумным насосом создают над поверхностью воды разрежение (0,05±0,01) МПа [(0,5±0,1) кгс/см 2 ], фиксируемое манометром. Пониженное давление поддерживают, засекая время, до прекращения выделения пузырьков воздуха из образцов, но не более 30 мин. После восстановления атмосферного давления образцы выдерживают в воде столько же времени, сколько под вакуумом, чтобы вода заполнила объем, который занимал удаленный воздух. Далее действуют аналогично двум первым методам.

Водопоглощение образца по массе в процентах определяют с погрешностью до 0,1 % по формуле:

где масса высушенного образца, г;

масса водонасыщенного образца, г.

Водопоглощение образца по объему в процентах определяют с погрешностью до 0,1 % по формуле:

где V – объем образца, см 3 .

Влажность материала определяется содержанием влаги, содержащейся в порах и адсорбированной на поверхности, отнесенной к массе материала в сухом состоянии. Влажность зависит как от свойств самого материала (пористости, гигроскопичности), так и от окружающее среды (влажность воздуха, наличие контакта с водой). Для определения данного свойства необходимо взвесить образец в естественном состоянии, а затем высушить его до постоянной массы и вновь взвесить. Влажность в процентах по массе определяется по формуле:

где масса образца в естественном состоянии, г;

масса высушенного образца, г.

Морозостойкость – свойство насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения, значительного снижения прочности и потери массы.

Замерзание воды, заполняющей поры материала, сопровождается увеличением ее объема примерно на 9%, в результате чего возникает давление на стенки пор, приводящее к разрушению материала. Однако во многих пористых материалах вода не может заполнить более 90% объема доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения. Поэтому разрушение материала наступает только после многократного попеременного замораживания и оттаивания.

Принимая во внимание неоднородность строения материала и неравномерность распределения в нем воды, удовлетворительную морозостойкость можно ожидать у таких пористых материалов, в которых вода заполняет не более 80% пор, т.е. объемное водопоглощение таких материалов составляет не более 80% открытой пористости. Плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, водопоглощение которых не превышает 0,5%, обладают высокой морозостойкостью. Морозостойкость имеет большое значение для стеновых материалов, систематически подвергающихся попеременному замораживанию и оттаиванию, а также для материалов, применяемых в фундаментах и кровельных покрытиях.

Для определения морозостойкости материалов контрольные и основные образцы насыщают водой. Контрольные образцы после водонасыщения испытывают на прочность. Основные образцы загружают в морозильную камеру в контейнере или устанавливают на сетчатый стеллаж камеры таким образом, чтобы расстояние между образцами, стенками контейнеров и вышележащими стеллажами было не менее 50 мм. Началом замораживания считают момент установления в камере температуры минус 16 °С. Образцы после замораживания оттаивают в ванне с водой при температуре (18±2)°С. При этом образцы должны быть погружены в воду таким образом, чтобы над верхней гранью был слой воды не менее 50 мм. Продолжительность циклов замораживания и оттаивания зависит от вида материала и от размеров образца. Число циклов переменного замораживания и оттаивания, после которых должно проводиться определение прочности или потери массы образцов, устанавливают в соответствии ГОСТом на испытуемый материал.

Материал признают морозостойким, если после заданного числа циклов замораживания и оттаивания потеря в массе образцов в результате выкрашивания и расслаивания не превышает 5%, а прочность снижается не более чем на 25%. Степень морозостойкости материала можно охарактеризовать коэффициентом морозостойкости:

где – предел прочности при сжатии образцов материала после испытания на морозостойкость, МПа; – предел прочности при сжатии насыщенного водой материала, МПа.

По числу выдерживаемых циклов попеременного замораживания и оттаивания материалы подразделяют на марки F10; F15; F25; F35; F50; F100; F150; F200 и более.

Для некоторых материалов существуют ускоренные методы определения морозостойкости материалов. Суть одного из методов заключается в насыщении основных и контрольных образцов перед испытанием 5%-ным водным раствором хлористого натрия. Затем образцы испытываются по приведенной выше методике лишь с тем отличием, что оттаивание производится в растворе хлористого натрия. Еще один ускоренный метод аналогичен описанному, однако температуру в морозильной камере опускают до –(50-55)°С. К примеру, для бетонов, выдержавших 8 циклов ускоренного попеременного замораживания-отаивания по третьему методу или 75 циклов по второму методу, назначается марка по морозостойкости F300.

Прочность – способность материала сопротивляться разрушению от действия внутренних напряжений, возникающих под влиянием внешней нагрузки. Поскольку в реальных конструкциях материал испытывает различные внутренние напряжения – сжатие, растяжение, изгиб, сдвиг, кручение то и прочность материалов обычно характеризуется величиной предела прочности при сжатии, растяжении, изгибе и т.д. Численно предел прочности равен напряжению, соответствующему нагрузке, вызвавшей разрушение образца материала.

Предел прочности при сжатии или растяжении , МПа равен разрушающей силе, приходящейся на 1 м 2 первоначального сечения материала в момент разрушения образца:

где – разрушающая сила, Н;

– площадь поперечного сечения образца, мм 2 .

где – разрушающая сила, Н;

– пролет между опорами, мм;

И – ширина и высота поперечного сечения балки, мм.

Предел прочности при изгибе при одном сосредоточенном грузе и образце-балке прямоугольного сечения:

где – расстояние между грузами, мм.

Предел прочности материала определяют опытным путем, испытывая в лаборатории на гидравлических прессах или разрывных машинах специально изготовленные образцы (разрушающие методы), либо при помощи неразрушающих методов – склерометрическим, ультразвуковым и т.д. Для испытания образца на сжатие образцы изготовляют в виде куба или цилиндра, на растяжение – в виде круглых стержней, полос или «восьмерок», а на изгиб – в виде балочек. Форма и размеры образцов должны строго соответствовать требованиям ГОСТа на каждый вид материала.

Прочность строительных материалов обычно характеризуется маркой, которая соответствует по величине пределу прочности при сжатии, полученному при испытании образцов стандартных форм и размеров. К примеру, обозначение марки по прочности при сжатии М150 соответствует прочности 150 кгс/см 2 (15МПа).